Sign In
Substitute the given points into the standard form of a quadratic function y=ax^2+bx+c to write a system of equations.
y=x^2-5x+2
Let's start by recalling the standard form of a quadratic function. y=ax^2+bx+c To find the equation of a parabola that includes the given points, we will substitute their coordinates into the above equation and simplify. With the resulting equations, we will write a system of equations. Then, we will solve it to find the coefficients a, b, and c.
y=ax^2+bx+c | ||
---|---|---|
Point | Substitute | Simplify |
( 1, - 2) | - 2=a( 1)^2+b( 1)+c | a+b+c=- 2 |
( 2, - 4) | - 4=a( 2)^2+b( 2)+c | 4a+2b+c=- 4 |
( 3, - 4) | - 4=a( 3)^2+b( 3)+c | 9a+3b+c=- 4 |
(II), (III): Subtract (I)
(II), (III): Distribute - 1
(II), (III): a-(- b)=a+b
(II), (III): Add and subtract terms
(III): Factor out 2
(III): .LHS /2.=.RHS /2.
(III): Subtract (II)
(III): Distribute - 1
(III): a-(- b)=a+b
(III): Add and subtract terms
(II): a= 1
(I): a= 1, b= - 5