Pearson Algebra 2 Common Core, 2011
PA
Pearson Algebra 2 Common Core, 2011 View details
3. Modeling With Quadratic Functions
Continue to next subchapter

Exercise 8 Page 212

Substitute the given points into the standard form of a quadratic function y=ax^2+bx+c to write a system of equations.

y=x^2-5x+2

Practice makes perfect

Let's start by recalling the standard form of a quadratic function. y=ax^2+bx+c To find the equation of a parabola that includes the given points, we will substitute their coordinates into the above equation and simplify. With the resulting equations, we will write a system of equations. Then, we will solve it to find the coefficients a, b, and c.

y=ax^2+bx+c
Point Substitute Simplify
( 1, - 2) - 2=a( 1)^2+b( 1)+c a+b+c=- 2
( 2, - 4) - 4=a( 2)^2+b( 2)+c 4a+2b+c=- 4
( 3, - 4) - 4=a( 3)^2+b( 3)+c 9a+3b+c=- 4
We can now write a system of three equations. a+b+c=- 2 & (I) 4a+2b+c=- 4 & (II) 9a+3b+c=- 4 & (III) Let's solve this system using the Elimination Method. We will start by subtracting Equation (I) from Equation (II) and Equation (III) to eliminate c.
a+b+c=- 2 4a+2b+c=- 4 9a+3b+c=- 4

(II), (III): Subtract (I)

a+b+c=- 2 4a+2b+c-( a+b+c)=- 4-( - 2) 9a+3b+c-( a+b+c)=- 4-( - 2)
â–Ľ
(II), (III): Simplify

(II), (III): Distribute - 1

a+b+c=- 2 4a+2b+c-a-b-c=- 4-(- 2) 9a+3b+c-a-b-c=- 4-(- 2)

(II), (III): a-(- b)=a+b

a+b+c=- 2 4a+2b+c-a-b-c=- 4+2 9a+3b+c-a-b-c=- 4+2

(II), (III): Add and subtract terms

a+b+c=- 2 3a+b=- 2 8a+2b=- 2
Now, neither Equation (II) nor Equation (III) contains c. These equations form a system in terms of only a and b. Let's solve this system by using the Elimination Method again. First, we will need to multiply or divide one equation by a number.
a+b+c=- 2 & (I) 3a+b=- 2 & (II) 8a+2b=- 2 & (III)
a+b+c=- 2 3a+b=- 2 2(4a+b)=- 2
a+b+c=- 2 3a+b=- 2 4a+b=- 1
a+b+c=- 2 3a+b=- 2 4a+b-( 3a+b)=- 1-( - 2)
â–Ľ
(III): Solve for a
a+b+c=- 2 3a+b=- 2 4a+b-3a-b=- 1-(- 2)
a+b+c=- 2 3a+b=- 2 4a+b-3a-b=- 1+2
a+b+c=- 2 3a+b=- 2 a=1
We found our first value, allowing us to write a partial equation. y= 1x^2+bx+c ⇕ y=x^2+bx+c Let's substitute 1 for a in Equation (II) to find the value of b.
a+b+c=- 2 & (I) 3a+b=- 2 & (II) a=1 & (III)
a+b+c=- 2 3( 1)+b=- 2 a=1
â–Ľ
(II): Solve for b
a+b+c=- 2 3+b=- 2 a=1
a+b+c=- 2 b= - 5 a=1
With our second value, we can continue writing the equation. y=x^2+( - 5)x+c ⇕ y=x^2-5x+c Finally, to find the value of c, we will substitute a=1 and b=- 5 into Equation (I).
a+b+c=- 2 & (I) b=- 5 & (II) a=1 & (III)
1+( - 5)+c=- 2 b=- 5 a=1
â–Ľ
(I): Solve for c
- 4+c=- 2 b=- 5 a=1
c= 2 b=- 5 a=1
Now that we have all three values, we can write the equation of the parabola that passes through the given points. y=x^2-5x+ 2 To help visualize this situation, we can plot the given points and sketch the curve.