Pearson Algebra 2 Common Core, 2011
PA
Pearson Algebra 2 Common Core, 2011 View details
3. Modeling With Quadratic Functions
Continue to next subchapter

Exercise 10 Page 212

Substitute the given points into the standard form of a quadratic function y=ax^2+bx+c to write a system of equations.

y=x^2+2x-2

Practice makes perfect

Let's start by recalling the standard form of a quadratic function. y=ax^2+bx+c To find the equation of a parabola that includes the given points, we will substitute their coordinates into the above equation and simplify. With the resulting equations, we will write a system of equations. Then, we will solve it to find the coefficients a, b, and c.

y=ax^2+bx+c
Point Substitute Simplify
( 1, 1) 1=a( 1)^2+b( 1)+c a+b+c=1
( - 1, - 3) - 3=a( - 1)^2+b( - 1)+c a-b+c=- 3
( - 3, 1) 1=a( - 3)^2+b( - 3)+c 9a-3b+c=1
We can now write a system of three equations. a+b+c=1 & (I) a-b+c=- 3 & (II) 9a-3b+c=1 & (III) Let's solve this system using the Elimination Method. We will start by subtracting Equation (II) from Equation (I).
a+b+c=1 a-b+c=- 3 9a-3b+c=1
a+b+c-( a-b+c)=1-( - 3) a-b+c=- 3 9a-3b+c=1
â–Ľ
(I): Solve for b
a+b+c-a+b-c=1-(- 3) a-b+c=- 3 9a-3b+c=1
a+b+c-a+b-c=1+3 a-b+c=- 3 9a-3b+c=1
2b=4 a-b+c=- 3 9a-3b+c=1
b= 2 a-b+c=- 3 9a-3b+c=1
We found our first value, allowing us to write a partial equation. y=ax^2+ 2x+c We can now substitute 2 for b in Equation (II) and Equation (III).
b=2 a-b+c=- 3 9a-3b+c=1

(II), (III): b= 2

b=2 a- 2+c=- 3 9a-3( 2)+c=1
â–Ľ
(II), (III): Simplify
b=2 a-2+c=- 3 9a-6+c=1
b=2 a+c=- 1 9a-6+c=1
b=2 a+c=- 1 9a+c=7
Now, neither Equation (II) nor Equation (III) includes b. These equations form a system in terms of only a and c. Let's solve this system by using the Elimination Method again. To do so, we will subtract Equation (II) from Equation (III).
b=2 a+c=- 1 9a+c=7
b=2 a+c=- 1 9a+c-( a+c)=7-( - 1)
â–Ľ
(III): Solve for a
b=2 a+c=- 1 9a+c-a-c=7-(- 1)
b=2 a+c=- 1 9a+c-a-c=7+1
b=2 a+c=- 1 8a=8
b=2 a+c=- 1 a= 1
With our second value, we can continue writing our equation. y= 1x^2+2x+c ⇕ y=x^2+2x+c Finally, we can substitute 1 for a in Equation (II) to find the value of c.
b=2 a+c=- 1 a=1
b=2 1+c=- 1 a=1
b=2 c= - 2 a=1
Now that we have all three values, we can complete the equation of the parabola that passes through the given points. y=x^2+2x+( - 2) ⇕ y=x^2+2x-2 To help visualize this situation, we can plot the given points and sketch the curve.