Sign In
Substitute the given points into the standard form of a quadratic function y=ax^2+bx+c to write a system of equations.
y=x^2+2x-2
Let's start by recalling the standard form of a quadratic function. y=ax^2+bx+c To find the equation of a parabola that includes the given points, we will substitute their coordinates into the above equation and simplify. With the resulting equations, we will write a system of equations. Then, we will solve it to find the coefficients a, b, and c.
y=ax^2+bx+c | ||
---|---|---|
Point | Substitute | Simplify |
( 1, 1) | 1=a( 1)^2+b( 1)+c | a+b+c=1 |
( - 1, - 3) | - 3=a( - 1)^2+b( - 1)+c | a-b+c=- 3 |
( - 3, 1) | 1=a( - 3)^2+b( - 3)+c | 9a-3b+c=1 |
(I): Subtract (II)
(I): Distribute - 1
(I): a-(- b)=a+b
(I): Add and subtract terms
(I): .LHS /2.=.RHS /2.
(II), (III): b= 2
(III): Subtract (II)
(III): Distribute (- 1)
(III): a-(- b)=a+b
(III): Add and subtract terms
(III): .LHS /8.=.RHS /8.