Before we try to write the equation of a specific that passes through some given points, let's make sure we have enough points. We will need at least three.
(1,0),(- 2,9),(- 4,5)
To use the given points, we need to substitute their ( x, y) coordinate pairs into the of a .
y=a x^2+b x+c, a≠0
Doing so will create a that we can solve for the values of a, b, and c. Let's start with (1,0).
y=ax^2+bx+c
0=a( 1)^2+b( 1)+c
a+b+c=0
We just wrote our first equation! Now let's do the same thing for (- 2,9).
y=ax^2+bx+c
9=a( - 2)^2+b( - 2)+c
9=a(4)+b(- 2)+c
9=4a+b(- 2)+c
9=4a-2b+c
4a-2b+c=9
To find our third and last equation, we will use (- 4,5).
y=ax^2+bx+c
5=a( - 4)^2+b( - 4)+c
5=a(16)+b(- 4)+c
5=16a+b(- 4)+c
5=16a-4b+c
16a-4b+c=5
We now have a system of three equations.
a+b+c=0 & (I) 4a-2b+c=9 & (II) 16a-4b+c=5 & (III)
Let's solve this system using the .
We will start by subtracting Equation (I) from Equation (II) to eliminate the c-variable.
a+b+c=0 4a-2b+c=9 16a-4b+c=9
a+b+c=0 4a-2b+c-( a+b+c)=9- 0 16a-4b+c=9
a+b+c=0 4a-2b+c-a-b-c=9-0 16a-4b+c=9
a+b+c=0 3a-3b=9 16a-4b+c=9
Now let's subtract Equation (I) from Equation (III) to eliminate the c-variable once more.
a+b+c=0 3a-3b=9 16a-4b+c=5
a+b+c=0 3a-3b=9 16a-4b+c-( a+b+c)=5- 0
a+b+c=0 3a-3b=9 16a-4b+c-a-b-c=5-0
a+b+c=0 3a-3b=9 15a-5b=5
Now, neither Equation (II) nor Equation (III) includes the c-variable. These equations form a system with only two variables, a and b. Let's solve this system by using the Elimination Method again.
Since neither variable has the same or opposite , we will need to multiply one equation by a number first.
a+b+c=0 3a-3b=9 15a-5b=5
a+b+c=0 15a-15b=45 15a-5b=5
a+b+c=0 15a-15b-( 15a-5b)=45- 5 15a-5b=5
a+b+c=0 15a-15b-15a+5b=45-5 15a-5b=5
a+b+c=0 - 10b=40 15a-5b=5
a+b+c=0 b=- 4 15a-5b=5
We found our first value, allowing us to form a partial equation.
y=ax^2+(- 4)x+c ⇔ y=ax^2-4x+c
Let's substitute - 4 for b in Equation (III) to find the value of a.
a+b+c=0 b=- 4 15a-5b=5
a+b+c=0 b=- 4 15a-5( - 4)=5
a+b+c=0 b=- 4 15a+20=5
a+b+c=0 b=- 4 15a=- 15
a+b+c=0 b=- 4 a=- 1
With our second value, we can continue forming the partial equation.
y=(- 1)x^2+(-4)x+c ⇔ y=- x^2-4x+c
Finally, to find the value of c, we will substitute a=- 1 and b=- 4 into Equation (I).
a+b+c=0 b=- 4 a=- 1
- 1+( - 4)+c=0 b=- 4 a=- 1
- 1-4+c=0 b=- 4 a=- 1
- 5+c=0 b=- 4 a=- 1
c=5 b=- 4 a=- 1
Now that we have all three values, we can complete the standard form equation of the parabola that passes through the given points.
y=(-1)x^2+(-4)x+5 ⇔ y=- x^2-4x+5
To help visualize this graph, we have plotted the given points and sketched the curve below.