Pearson Algebra 2 Common Core, 2011
PA
Pearson Algebra 2 Common Core, 2011 View details
3. Modeling With Quadratic Functions
Continue to next subchapter

Exercise 11 Page 212

Substitute the given points into the standard form of a quadratic function y=ax^2+bx+c to write a system of equations.

y=x^2-6x+3

Practice makes perfect

Let's start by recalling the standard form of a quadratic function. y=ax^2+bx+c To find the equation of a parabola that includes the given points, we will substitute their coordinates into the above equation and simplify. With the resulting equations, we will write a system of equations. Then, we will solve it to find the coefficients a, b, and c.

y=ax^2+bx+c
Point Substitute Simplify
( 3, - 6) - 6=a( 3)^2+b( 3)+c 9a+3b+c=- 6
( 1, - 2) - 2=a( 1)^2+b( 1)+c a+b+c=- 2
( 6, 3) 3=a( 6)^2+b( 6)+c 36a+6b+c=3
We can now write a system of three equations. 9a+3b+c=- 6 & (I) a+b+c=- 2 & (II) 36a+6b+c=3 & (III) Let's solve this system using the Elimination Method. We will start by subtracting Equation (II) from Equation (I) and Equation (III) to eliminate c.
9a+3b+c=- 6 a+b+c=- 2 36a+6b+c=3

(I), (III): Subtract (II)

9a+3b+c-( a+b+c)=- 6-( - 2) a+b+c=- 2 36a+6b+c-( a+b+c)=3-( - 2)
â–Ľ
(I), (III): Simplify

(I), (III): Distribute - 1

9a+3b+c-a-b-c=- 6-(- 2) a+b+c=- 2 36a+6b+c-a-b-c=3-(- 2)

(I), (III): a-(- b)=a+b

9a+3b+c-a-b-c=- 6+2 a+b+c=- 2 36a+6b+c-a-b-c=3+2

(I), (III): Add and subtract terms

8a+2b=- 4 a+b+c=- 2 35a+5b=5
Now, neither Equation (I) nor Equation (III) includes c. These equations form a system in terms of only a and b. Let's solve this system by using the Elimination Method again. First, we need to simplify the equations a bit.
8a+2b=- 4 & (I) a+b+c=- 2 & (II) 35a+5b=5 & (III)
â–Ľ
(I), (III): Simplify
2(4a+b)=- 4 a+b+c=- 2 35a+5b=5
4a+b=- 2 a+b+c=- 2 35a+5b=5
4a+b=- 2 a+b+c=- 2 5(7a+b)=5
4a+b=- 2 a+b+c=- 2 7a+b=1
4a+b=- 2 a+b+c=- 2 7a+b-( 4a+b)=1-( - 2)
â–Ľ
(III): Solve for a
4a+b=- 2 a+b+c=- 2 7a+b-4a-b=1-(- 2)
4a+b=- 2 a+b+c=- 2 7a+b-4a-b=1+2
4a+b=- 2 a+b+c=- 2 3a=3
4a+b=- 2 a+b+c=- 2 a= 1
We found our first value, allowing us to write a partial equation. y= 1x^2+bx+c ⇕ y=x^2+bx+c Let's substitute 1 for a in Equation (I) to find the value of b.
4a+b=- 2 & (I) a+b+c=- 2 & (II) a=1 & (III)
4( 1)+b=- 2 a+b+c=- 2 a=1
â–Ľ
(I): Solve for b
4+b=- 2 a+b+c=- 2 a=1
b= - 6 a+b+c=- 2 a=1
With our second value, we can continue writing our equation. y=x^2+( - 6)x+c ⇕ y=x^2-6x+c Finally, to find the value of c, we will substitute a=1 and b=- 6 into Equation (II).
b=- 6 & (I) a+b+c=- 2 & (II) a=1 & (III)
b=- 6 1+( - 6)+c=- 2 a=1
â–Ľ
(II): Solve for c
b=- 6 - 5+c=- 2 a=1
b=- 6 c= 3 a=1
Now that we have all three values, we can complete the equation of the parabola that passes through the given points. y=x^2-6x+ 3 To help visualize this situation, we can plot the given points and sketch the curve.