Pearson Algebra 2 Common Core, 2011
PA
Pearson Algebra 2 Common Core, 2011 View details
3. Modeling With Quadratic Functions
Continue to next subchapter

Exercise 20 Page 213

Can you write the standard form of a quadratic function using the information provided? If not, there is no quadratic model for the given set of values.

A quadratic model does not exist for the given set of values.

Practice makes perfect

We want to determine whether there is a parabola that fits the given set of values.

Given information Point
f( - 1)= - 4 ( - 1, - 4)
f( 1)= - 2 ( 1, - 2)
f( 2)= - 1 ( 2, - 1)
To use the given points, we need to substitute their ( x, y) coordinate pairs into the standard form of a quadratic function. y=a x^2+b x+c, a≠ 0 Doing so will create a system of equations that we can solve for the values of a, b, and c. Let's start with (- 1,- 4).
y=ax^2+bx+c
- 4=a( - 1)^2+b( - 1)+c
â–Ľ
Simplify
- 4=a(1)+b(- 1)+c
- 4=a+b(- 1)+c
- 4=a-b+c
a-b+c=- 4
We just wrote our first equation! Now let's do the same thing for (1,- 2).
y=ax^2+bx+c
- 2=a( 1)^2+b( 1)+c
â–Ľ
Simplify
- 2=a(1)+b(1)+c
- 2=a+b+c
a+b+c=- 2
To find our third and last equation, we will use (2,- 1).
y=ax^2+bx+c
- 1=a( 2)^2+b( 2)+c
â–Ľ
Simplify
- 1=a(4)+b(2)+c
- 1=4a+2b+c
4a+2b+c=- 1
We now have a system of three equations. a-b+c=- 4 & (I) a+b+c=- 2 & (II) 4a+2b+c=- 1 & (III) Let's solve the system using the Elimination Method. We will start by subtracting Equation (I) from Equation (II).
a-b+c=- 4 a+b+c=- 2 4a+2b+c=- 1
a-b+c=- 4 a+b+c-( a-b+c)=- 2-( - 4) 4a+2b+c=- 1
â–Ľ
(II): Solve for b
a-b+c=- 4 a+b+c-a+b-c=- 2-( - 4) 4a+2b+c=- 1
a-b+c=- 4 a+b+c-a+b-c=- 2+4 4a+2b+c=- 1
a-b+c=- 4 2b=2 4a+2b+c=- 1
a-b+c=- 4 b=1 4a+2b+c=- 1
We found that b=1. y=ax^2+1x+c ⇔ y=ax^2+x+c Let's now substitute 1 for b in Equation (I) and Equation (III).
a-b+c=- 4 b=1 4a+2b+c=- 1

(I), (III): b= 1

a- 1+c=- 4 b=1 4a+2( 1)+c=- 1
â–Ľ
(I), (III): Simplify
a+c=- 3 b=1 4a+2(1)+c=- 1
a+c=- 3 b=1 4a+2+c=- 1
a+c=- 3 b=1 4a+c=- 3
Note that now Equation (I) and Equation (III) form a system of two equations with two variables. We will solve it using the Elimination Method again. Let's subtract Equation (I) from Equation (III).
a+c=- 3 b=1 4a+c=- 3
a+c=- 3 b=1 4a+c-( a+c)=- 3-( - 3)
â–Ľ
(III): Solve for a
a+c=- 3 b=1 4a+c-a-c=- 3-( - 3)
a+c=- 3 b=1 4a+c-a-c=- 3+3
a+c=- 3 b=1 3a=0
a+c=- 3 b=1 a=0
We found that a=0. y=0x^2+1x+c ⇔ y=x+c Finally, to find the value of c, we will substitute 0 for a in Equation (I).
a+c=- 3 b=1 a=0
0+c=- 3 b=1 a=0
c=- 3 b=1 a=0
Now that we have a=0, b=1, and c=- 3, we can write the function. The standard form of a quadratic function is y=ax^2+bx+c, with a≠ 0. In our equation, we have that a=0 and thus it is not a parabola. y=0x^2+1x+(- 3) ⇔ y=x-3 If we pay close attention, we can see that the above equation represents a line, not a parabola.