Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

Describing Triangles

Describing Triangles 1.19 - Solution

arrow_back Return to Describing Triangles

The interior angles theorem tells us that the sum of angles in a triangle is always 180.180^\circ. Using this we can find the measure of the unknown interior angle, which we can denote x,x, in the triangle. x+65+57=180    x=1806557=58 x+65+57=180 \; \Leftrightarrow \; x=180-65-57=58 Thus, the measure of the unknown interior angle is 58.58^\circ. Together with v,v, a straight angle is formed.

Exercise 827 2.svg

That means the sum of them is 180180^\circ mv+58=180mv=122 m\angle v+58^\circ=180^\circ \quad \Leftrightarrow \quad m \angle v=122^\circ We have found the measure of v\angle v and it is 122.122^\circ.