Rule

Angle-Side-Angle Congruence Theorem

If two angles and the included side of a triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.
Triangle ABC is congruent to triangle DEF

Based on the diagram above, the theorem can be written as follows.

Proof

Angle-Side-Angle Congruent Theorem

This proof will be developed based on the given diagram, but it is valid for any pair of triangles.

Triangle ABC and triangle DEF with two pairs of congruent angles and one pair of the congruent included sides
The goal of the proof is to find a rigid motion or sequence of rigid motions that maps one triangle onto the other. This can be done in several ways. One of the ways will be shown here.
1
Translate So That Two Corresponding Vertices Match
expand_more
Translate so that is mapped onto If this translation maps onto the proof is complete.
Translation that maps vertex D of triangle DEF onto vertex A of triangle ABC
Since the image of the translation does not match at least one more transformation is needed.
2
Rotate So That Two Corresponding Sides Match
expand_more
Rotate counterclockwise about so that a pair of corresponding sides match. If the image of this transformation is the proof is complete. Note that this rotation maps onto Therefore, the rotation maps onto
Rotation that maps vertex E' of AE'F' onto B of ABC
As before, the image does not match Therefore, a third rigid motion is required.
3
Reflect So That All Corresponding Sides Match
expand_more
Reflect across Because reflections preserve angles, and are mapped onto and respectively. Then, the point of intersection of the original rays is mapped onto the point of intersection of the image rays
Reflection that maps ABF'' onto ABC
This time the image matches
Consequently, after a sequence of rigid motions can be mapped onto This means that and are congruent triangles.