Big Ideas Math Integrated I, 2016
BI
Big Ideas Math Integrated I, 2016 View details
3. Function Notation
Continue to next subchapter

Exercise 36 Page 126

Write a function and see if the statement holds true for two arbitrary inputs.

False

Practice makes perfect
Let's test the statement f(a+b)=f(a)+f(b) with the linear function f(x)=3x+3, and two arbitrary values, a= 1 and b= 2. f(a+b) &⇒ f( 1+ 2) f(a)+f(b) &⇒ f( 1)+f( 2) Let's start by calculating f(1+2). To do so, we will substitute (1+2) for x in f(x)=3x+3.
f(x)=3x+3
f( 1+ 2)=3( 1+ 2)+3
â–Ľ
Simplify
f(3)=3(3)+3
f(3)=9+3
f(3)=12
Let's now calculate the value of f(1)+f(2).
f(x)=3x+3
x=1 x=2
f( 1)=3( 1)+3 f( 2)=3( 2)+3
f(1)=3+3 f(2)=6+3
f(1)=6 f(2)=9

Therefore, f(1)+f(2) equals 6+9=15. f(1+2)=12 and f(1)+f(2)=15 Since 12 does not equal 15, we know that f(1+2)≠ f(1)+f(2). Therefore, we know that it is not always true that f(a+b)=f(a)+f(b). The statement is false.