{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Show less Show more expand_more
{{ ability.description }} {{ ability.displayTitle }}
Lesson Settings & Tools
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
This lesson will introduce the concept of a square root and how to operate its many properties.

Catch-Up and Review

Here are a few recommended readings before getting started with this lesson.

Challenge

The Golden Ratio

The golden ratio is the ratio of two positive numbers with the property that their ratio is the same as the ratio of their sum to the larger of the two numbers. It is represented by the Greek letter . Its value is given by the following expression.
Not only mathematicians, but throughout history, architects and artists have used this ratio. To this day, people still paint on canvases shaped as a golden rectangle. The length and width of this rectangle are in the golden ratio.
Dylan, an avid painter, sets out to buy an uncut canvas. Feeling savvy, he thinks he can cut the canvas himself in such a way that it becomes a golden rectangle. Dylan aims to cut the canvas a length of inches. What should be the width?
Dylan Canvas Golden Ratio
Discussion

Square Roots

Some numbers cannot be expressed as the ratio of two integers. These numbers have a special name.

Concept

Irrational Numbers

The set of irrational numbers is formed by all numbers that cannot be expressed as the ratio between two integers.
Irrational numbers are real numbers, but they cannot be expressed as fractions. Also, the decimal expansion of irrational numbers is not repeating and non-terminating.
In other words, a number is irrational if it is not rational. Although this number set does not have its own symbol, it is sometimes represented with a combination of other symbols.

From the examples given above, and are called the square root of the square root of and the square root of respectively.

Concept

Square Root

A square root of a number is a number that, when multiplied by itself, equals For example, and are the square roots of
All positive numbers have two square roots — one positive and one negative. To avoid ambiguity, when talking about the square root of a number, only the positive root, also known as its principal root, is considered. Furthermore, to denote the square root, the symbol is used. For example, the square root of is denoted as
In the example above, the principal root of is because multiplied by itself equals and is positive. When a number is a perfect square, its square roots are integers. The square roots of positive integers that are non-perfect squares are irrational numbers.
Principal Root of Perfect Squares Principal Root of Non-Perfect Squares
Perfect Square Principal Root
(Integer Number)
Non-Perfect Square Principal Root
(Irrational Number)

Extra

Square Roots of Fractions and Decimal Numbers
Separate from whole numbers, the square roots of fractions can be calculated by taking square roots of the numerator and denominator separately. Consider the following example.
The square roots of decimal numbers can be calculated by writing them in the fraction form. Then, the square roots of the numerator and denominator are calculated. Consider the following example.
Example

Fertilizing a Garden Using the Square Root

Emily visited her grandparent's new house for a family gathering. She loves their huge backyard! Her grandpa, eager to let her explore, told her she can use some of the free space and some leftover fertilizer to make herself a little flower garden!

Grandpa says that there is enough fertilizer to cover square feet. Emily wants to use this fertilzer to make a garden in the shape of a square.
What should be the length of one side of the garden?

Hint

What is the square root of

Solution

The area of Emily's garden can be found by using the formula for the area of a square. Further, since there is enough fertilizer to cover square feet, this number can be substituted into the formula.
The obtained equation states that is a number whose square equals This means that multiplied by itself is Therefore, is the square root of Since represents the side length of a square, it must be positive. Because of this fact, only the principal root will be considered.
For the garden's area to be square feet, the side length must be feet. Emily can now start gardening in full confidence!
Discussion

Product Property of Square Roots

Sometimes it is necessary to simplify a square root. The Product Property of Square Roots can be helpful when doing so.

Given two non-negative numbers and the square root of their product equals the product of the square root of each number.

for and

Proof

Let and be three non-negative numbers such that and By the definition of a square root, each of these numbers squared is equal to its corresponding radicand.
Next, multiply Equation (I) by
Now, substitute Equations (II) and (III) into this equation.
Substitute values and simplify
Since and are non-negative, the final equation implies that
The last step is substituting and into this equation.
Example

Finding the Area of a Plot

At the family gathering, Emily's aunt named Auntie Agent is gushing about her job as a real estate agent. She is bragging about a recent business deal. She purchased a new plot that is located next to two plots she also owns, as highlighted in the diagram.

Auntie Agent wants to resale her newly purchased plot in a few years. To do so, she needs to know the area of the plot. Unfortunately, the land bill is severely faded, and the area is unreadable. Luckily, she knows the areas of the two square plots next to it. Knowing that Emily is good at math, Auntie Agent asks her for help.

Help Emily and Auntie Agent find the area of the new plot.

Hint

Use the formula for the area of a square and the formula for the area of a rectangle.

Solution

The area of the new plot can be found by using the formula for the area of a rectangle.
Analyzing the diagram, it can be realized that and correspond to the lengths of the square plots.

Since the areas of the square plots are known, it is possible to find and

Area of Square Plot Side Length
Finally, the area of the newly acquired plot can be found by substituting these values into the formula for the area of a rectangle. Then, the Product Property of Square Roots can be used.
Therefore, the area of the new plot is square meters. Auntie Agent is ready to wheel and deal!
Example

Simplifying Square Roots

Auntie Agent finds herself bored of the family gathering. She sneaks off to the kitchen wanting to calculate a few math problems from her kid's math textbook! She notices an interesting expression on a graphing calculator.

She notices that the square root of appears to be twice the value of the square root of Auntie Agent, curious to know why, checks her kid's notes and sees the following notes from his class.

The teacher said that the radicand ought to be factored using perfect squares. Then, the Product Property of Square Roots can be used. The teacher suggested to simplify using this method. Help Auntie Agent rewrite in terms of Write the exact value, not an approximation.

Hint

Factor using perfect squares.

Solution

In order to use the Product Property of Square Roots, the radicand should be factored using perfect squares.
Knowing this, the Product Property of Square Roots can be used.
Therefore, equals Auntie Agent feels relieved to have figured out what the graphing calculator expressed.
Pop Quiz

Simplify the Expression

Use the Product Property of Square Roots to simplify the given square roots.

Simplify Radicand Random
Discussion

Quotient Property of Square Roots

When working with square roots, just like how the product of a square root operates, there is a similar property for quotients.

Let be a non-negative number and be a positive number. The square root of the quotient equals the quotient of the square roots of and

for

Proof

Let and be non-negative numbers such that and By the definition of a square root, each of these numbers squared is equal to its corresponding radicand.
Since is a positive number, is also positive. Therefore, Equation (I) can be divided by
Now, substitute Equations (II) and (III) into this equation.
Substitute values and simplify

Since and are non-negative, the final equation implies that
The last step is substituting and into this equation.
Example

Finding the Hypotenuse of a Right Triangle

Emily roams over to see what her cousins are up to, and one of them is working on some geometry homework. They need to find the hypotenuse of the right triangle shown in the diagram.

Emily's cousin knows that the Pythagorean Theorem can be used to find the hypotenuse of the triangle. After some algebraic manipulation they managed to isolate
After adding the squares of the legs, they are left with a numeric expression for the hypotenuse of the triangle. They wonder if this can be simplified.
Help Emily and their cousin by simplifying the expression for the hypotenuse of the triangle.

Solution

Emily and their cousin already did most of the work! In order to simplify the given expression the Quotient Property of Square Roots can be used. Then, the square roots of the numerator and denominator can be calculated.