McGraw Hill Integrated II, 2012
MH
McGraw Hill Integrated II, 2012 View details
5. Solving Quadratic Equations by Using the Quadratic Formula
Continue to next subchapter

Exercise 18 Page 137

Identify a, b and c.

1.9, 0.5

Practice makes perfect
We will use the Quadratic Formula to solve the given quadratic equation. ax^2+ bx+ c=0 ⇕ x=- b± sqrt(b^2-4 a c)/2 a We first need to identify the values of a, b, and c. 6x^2-12x+1=0 ⇕ 6x^2 + ( - 12)x + 1=0 We see that a= 6, b= - 12, and c= 1. Let's substitute these values into the Quadratic Formula.
x=- b±sqrt(b^2-4ac)/2a
x=- ( - 12)±sqrt(( - 12)^2-4( 6)( 1))/2( 6)
Solve for x and Simplify
x=12±sqrt((- 12)^2-4(6)(1))/2(6)
x=12±sqrt(144-4(6)(1))/2(6)
x=12±sqrt(144-24)/12
x=12±sqrt(120)/12
x=12±sqrt(4 * 30)/12
x=12± sqrt(4)* sqrt(30)/12
x=12± 2 sqrt(30)/12
x=2(6± sqrt(30))/12
x=6± sqrt(30)/6
The solutions for this equation are x= 6± sqrt(30)6. Let's separate them into the positive and negative cases.
x=6 ± sqrt(30)/6
x_1=6+sqrt(30)/6 x_2=6 - sqrt(30)/6
x_1≈ 1.9 x_2≈ 0.5

Using the Quadratic Formula, we found that the solutions of the given equation are x_1 ≈ 1.9 and x_2≈ 0.5.