5. Solving Quadratic Equations by Using the Quadratic Formula
Sign In
Rewrite the function g(x) in terms of f(x).
Translate down 6 units.
The following table illustrates the general form for all possible transformations of functions.
| Transformations of f(x) | |
|---|---|
| Vertical Translations | Translation up k units, k>0 y=f(x)+ k |
| Translation down k units, k<0 y=f(x)+ k | |
| Horizontal Translations | Translation right h units, h>0 y=f(x- h) |
| Translation left h units, h<0 y=f(x- h) | |
| Vertical Stretch or Compression | Vertical stretch, a>1 y= af(x) |
| Vertical compression, 0< a< 1 y= af(x) | |
| Horizontal Stretch or Compression | Horizontal stretch, 0< b<1 y=f( bx) |
| Horizontal compression, b>1 y=f( bx) | |
| Reflections | In the x-axis y=- f(x) |
| In the y-axis y=f(- x) | |