Sign In
Use the Fundamental Theorem of Algebra to find the number of zeros. Then, use Descartes' Rule of Signs to determine the possible number of positive and negative real zeros.
x=4, x=4, x=-2i, x=2i
To find the zeros of the given polynomial function, we will follow three steps.
Let's do it!
Consider the given function. f(x)=x^4-8x^3+20x^2-32x+64 We see the degree of the polynomial is 4. According to the Fundamental Theorem of Algebra, the function has four zeros. This is including any repeated zeros.
There are four sign changes for the coefficients of f(x). According to Descartes' Rule of Signs, the function has zero, two, or four positive real zeros. Next, let's write and simplify f(- x). f(- x) = (- x)^4 - 8(- x)^3 + 20(- x)^2 - 32(- x) + 64 ⇕ f(- x)=x^4+8x^3+20x^2+32x+64 As we did for f(x), we will examine the number of sign changes for f(- x).
There are no sign changes for the coefficients of f(- x). Once again, according to Descartes' Rule of Signs, the function has zero negative real zeros. Therefore, there are three options for the types of zeros of f(x). Remember, we know that there are four zeros in total.
Option 1 | Option 2 | Option 3 | ||||
---|---|---|---|---|---|---|
Real Zeros | 0 positive | Real Zeros | 2 positive | Real Zeros | 4 positive | |
0 negative | 0 negative | 0 negative | ||||
Imaginary Zeros | 4 | Imaginary Zeros | 2 | Imaginary Zeros | ||
Number of Zeros | 0+ 0+4=4 total | Number of Zeros | 2+ 0+2=4 total | Number of Zeros | 4+ 0+ =4 total |
Let's now determine the real zeros by making a table of values.
x | x^4-8x^3+20x^2-32x+64 | f(x)=x^4-8x^3+20x^2-32x+64 |
---|---|---|
0 | 0^4-8( 0)^3+20( 0)^2-32( 0)+64 | 64 |
1 | 1^4-8( 1)^3+20( 1)^2-32( 1)+64 | 45 |
2 | 2^4-8( 2)^3+20( 2)^2-32( 2)+64 | 32 |
3 | 3^4-8( 3)^3+20( 3)^2-32( 3)+64 | 13 |
4 | 4^4-8( 4)^3+20( 4)^2-32( 4)+64 | 0 |
5 | 5^4-8( 5)^3+20( 5)^2-32( 5)+64 | 29 |
Bring down the first coefficient
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down
x | x^3-4x^2+4x-16 | f(x)=x^3-4x^2+4x-16 |
---|---|---|
0 | 0^3-4( 0)^2+4( 0)-16 | -16 |
1 | 1^3-4( 1)^2+4( 1)-16 | -15 |
2 | 2^3-4( 2)^2+4( 2)-16 | -16 |
3 | 3^3-4( 3)^2+4( 3)-16 | -13 |
4 | 4^3-4( 4)^2+4( 4)-16 | 0 |
5 | 5^3-4( 5)^2+4( 5)-16 | 29 |
LHS-16=RHS-16
sqrt(LHS)=sqrt(RHS)
sqrt(- a)= sqrt(a)* i
Calculate root
Bring down the first coefficient
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down