3. Special Right Triangles
Sign In
In the given figure, you can find a 45^(∘)-45 ^(∘)-90 ^(∘) triangles.
≈1.41 ft
Let's begin with recalling the 45^(∘)-45^(∘)-90^(∘) Triangle Theorem. This theorem tells us that in an isosceles right triangle the legs l are congruent and the length of the hypotenuse is sqrt(2) times the length of a leg.
AB= 2
.LHS /sqrt(2).=.RHS /sqrt(2).
Rearrange equation
LHS * 1=RHS* 1
Rewrite 1 as sqrt(2)/sqrt(2)
a * 1=a
Multiply fractions
a* a=a^2
( sqrt(a) )^2 = a
a/b=.a /2./.b /2.
a/1=a
Round to 2 decimal place(s)