4. Perimeter and Area in the Coordinate Plane
Sign In
Use the Distance Formula.
P ≈ 20.60 units
To determine the perimeter of the polygon, we must find the sum of its side lengths. This polygon has three vertices, so it is a triangle. Let's draw it in a coordinate plane.
Substitute ( - 3,2) & ( 4,2)
a-(- b)=a+b
Add and subtract terms
Calculate power
Calculate root
Side | Coordinates | sqrt((x_2-x_1)^2+(y_2-y_1)^2) | Length |
---|---|---|---|
EF | ( 4,2) ( 4,- 3) |
sqrt(( 4- 4)^2+( - 3- 2)^2) | 5 |
FD | ( 4,- 3) ( - 3,2) |
sqrt(( - 3- 4)^2+( 2-( - 3))^2) | sqrt(74) |
Substitute values
Use a calculator
Round to 2 decimal place(s)