Big Ideas Math Integrated I, 2016
BI
Big Ideas Math Integrated I, 2016 View details
4. Perimeter and Area in the Coordinate Plane
Continue to next subchapter

Exercise 14 Page 410

Use the Distance Formula and the Ruler Postulate.

P ≈ 16.94 units.

Practice makes perfect
The given polygon has six sides, AB, BC, CD, DE, EF, and FA. Four of these sides are either vertical or horizontal, so for these cases we can use the Ruler Postulate. Let's start with BC.
BC=|y_2-y_1|
BC=| - 2 - 0|
BC=|- 2|
BC=2
We can do all four vertical and horizontal sides of the polygon in the same way.
Side Coordinates |x_2-x_1| or |y_2-y_1| Length
BC (2,0)
(2,- 2)
|y_2-y_1|→ | - 2- 0| 2
CD (2,- 2)
(0,- 2)
|x_2-x_1|→ | 0- 2| 2
EF (- 2,2)
(- 2,4)
|y_2-y_1|→ | 4- 2| 2
FA (- 2,4)
(0,4)
|x_2-x_1|→ | 0-( - 2)| 2
For the remaining two sides, we will need to use the Distance Formula. Let's start with AB.
AB = sqrt((x_2-x_1)^2 + (y_2-y_1)^2)
AB = sqrt(( 2- 0)^2 + ( 0- 4)^2)
AB=sqrt(2^2+(- 4)^2)
AB=sqrt(4+16)
AB=sqrt(20)
We will find the length of DE in the same way, giving us both of our remaining side lengths.
Side Coordinates sqrt((x_2-x_1)^2+(y_2-y_1)^2) Length
AB (0,4)
(2,0)
sqrt(( 2- 0)^2+( 0- 4)^2) sqrt(20)
DE (0,-2)
(-2,2)
sqrt(( -2- 0)^2+( 2-( -2))^2) sqrt(20)
We can now calculate the perimeter which is the sum of the length of the sides.
P=AB + BC + CD + DE + EF + FA
P= sqrt(20) + 2 + 2 + sqrt(20) + 2 + 2
P = 16.94427...
P ≈ 16.94
The polygon's perimeter is P ≈ 16.94 units.