Start chapters home Start History history History expand_more Community
Community expand_more
menu_open Close
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
No results
{{ searchError }}
Expand menu menu_open home
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ }} {{ }}
search Use offline Tools apps
Login account_circle menu_open
Quadratic Functions and Equations

Using the Quadratic Formula to find Complex Roots

Sometimes, quadratic equations have no solutions that can be expressed using real numbers. However, it is possible to use complex numbers to express these non-real solutions.


The Quadratic Formula

The quadratic formula is

where and correspond with the values of a quadratic equation written in standard form, It is derived by completing the square on the general standard form equation. The quadratic formula can be used to find solution(s) to quadratic equations.


The Number of Solutions of a Quadratic Equation

The solutions of a quadratic equation in the form can be interpreted graphically as the zeros of the quadratic function

If the function has two zeros, the equation has two solutions, and if the function has one zero, the equation has one solution. If the function doesn't have any zeros, the equation is said to have no real solutions.



In the quadratic formula, the term under the radical sign is called the discriminant.

Diskriminant Wordlist 1586 en.svg

It's possible to use the discriminant to determine the number of solutions a quadratic equation has. The solutions to a quadratic equation correspond to the zeros of the parabola.

Antal lösningar till andragradsekvation


Complex Solutions of a Quadratic Equation

When the discriminant is negative, there are no real solutions of the quadratic equation. However, the square root of a negative number can be written as an imaginary number. This way, complex solutions of a quadratic equation can be found.

Solve the equation using the quadratic formula.

Show Solution
Since the quadratic equation is given in standard form, we can immediately identify the constants Let's substitute these values into the quadratic formula to solve the equation.
Notice that there is a negative number inside the square root. Thus, the equation has no real solutions. However, we can calculate the complex roots using the identity
The solutions to the equation are and
{{ 'mldesktop-placeholder-grade-tab' | message }}
{{ 'mldesktop-placeholder-grade' | message }} {{ article.displayTitle }}!
{{ grade.displayTitle }}
{{ exercise.headTitle }}
{{ 'ml-tooltip-premium-exercise' | message }}
{{ 'ml-tooltip-programming-exercise' | message }} {{ 'course' | message }} {{ exercise.course }}
{{ 'ml-heading-exercise' | message }} {{ focusmode.exercise.exerciseName }}
{{ 'ml-btn-previous-exercise' | message }} arrow_back {{ 'ml-btn-next-exercise' | message }} arrow_forward