{{ stepNode.name }}

{{ stepNode.name }}

Proceed to next lesson

An error ocurred, try again later!

Chapter {{ article.chapter.number }}

{{ article.number }}. # {{ article.displayTitle }}

{{ article.introSlideInfo.summary }}

{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} {{ 'ml-lesson-show-solutions' | message }}

{{ 'ml-lesson-show-hints' | message }}

| {{ 'ml-lesson-number-slides' | message : article.introSlideInfo.bblockCount}} |

| {{ 'ml-lesson-number-exercises' | message : article.introSlideInfo.exerciseCount}} |

| {{ 'ml-lesson-time-estimation' | message }} |

Image Credits *expand_more*

- {{ item.file.title }} {{ presentation }}

No file copyrights entries found

$7_{4}=47⋅7⋅7⋅7 $

Most powers are read in the same way, whether they are numeric or algebraic. Expression | Example $1$ | Example $2$ |
---|---|---|

$2_{2}$ | $2$ to the second power |
$2$ squared |

$7_{3}$ | $7$ to the third power |
$7$ cubed |

$5_{4}$ | $5$ raised to the power of $4$ |
$5$ raised to the fourth power |

$m_{4}$ | $m$ raised to the power of $4$ |
$m$ raised to the fourth power |

$x_{9}$ | $x$ to the power of $9$ |
$x$ to the ninth power |

This table contains two special cases — when a number or variable is raised to the power of $2$ or $3,$ the power can be read as squared

or cubed,

respectively.