{{ toc.name }}
{{ toc.signature }}
{{ toc.name }} {{ 'ml-btn-view-details' | message }}
{{ stepNode.name }}
{{ 'ml-toc-proceed' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
{{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }} {{ ability.displayTitle }}
{{ 'ml-heading-lesson-settings' | message }}
{{ 'ml-lesson-show-solutions' | message }}
{{ 'ml-lesson-show-hints' | message }}
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount}}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount}}
{{ 'ml-lesson-time-estimation' | message }}

Discussion

Properties of a Parallelogram's Opposite Sides

A conclusion that can be made from the previous exploration is that the opposite sides of a parallelogram are congruent. This is explained in detail in the following theorem.

Rule

Parallelogram Opposite Sides Theorem

The opposite sides of a parallelogram are congruent.

parallelogram

In respects to the characteristics of the diagram, the following statement holds true.

Proof

Using Congruent Triangles

This theorem can also be proven by using congruent triangles. Consider the parallelogram and its diagonal

parallelogram and one of its diagonals
It can be noted that two triangles are formed with as a common side.
By the definition of a parallelogram, and are parallel. Therefore, by the Alternate Interior Angles Theorem, it can be stated that and that Furthermore, by the Reflexive Property of Congruence, is congruent to itself.
parallelogram and one of its diagonals and the two pair of congruent angles
Consequently, and have two pairs of congruent angles and an included congruent side.
Therefore, by the Angle-Side-Angle Congruence Theorem, and are congruent triangles.
Since corresponding parts of congruent figures are congruent, is congruent to and is congruent to

Furthermore, it can be stated whether a quadrilateral is a parallelogram just by checking if its opposite sides are congruent.

Rule

Converse Parallelogram Opposite Sides Theorem

If the opposite sides of a quadrilateral are congruent, then the polygon is a parallelogram.

parallelogram

Following the above diagram, the statement below holds true.

If and then is a parallelogram.

Proof

This theorem can be proven by using congruent triangles. Consider the quadrilateral whose opposite sides are congruent, and its diagonal By the Reflexive Property of Congruence, this diagonal is congruent to itself.

parallelogram and one of its diagonals
Therefore, by the Side-Side-Side Congruence Theorem, and are congruent triangles.
Since corresponding parts of congruent figures are congruent, corresponding angles of and are congruent.
parallelogram and one of its diagonals

Finally, by the Converse of the Alternate Interior Angles Theorem, is parallel to and is parallel to Therefore, by the definition of a parallelogram, is a parallelogram.

parallelogram

This proves the theorem.

If and then is a parallelogram.

Another conclusion that can be made from the exploration is that the opposite angles of a parallelogram are congruent. This is explained in detail in the following theorem.

Rule

Parallelogram Opposite Angles Theorem

In a parallelogram, the opposite angles are congruent.

For the parallelogram the following statement holds true.

Proof

This theorem can be proved by using congruent triangles. Consider the parallelogram and its diagonal

Opposite sides of a parallelogram are parallel. Therefore, by the Alternate Interior Angles Theorem it can be stated that and Furthermore, by the Reflexive Property of Congruence, is congruent to itself.

Two angles of and their included side are congruent to two angles of and their included side. By the Angle-Side-Angle Congruence Theorem, and are congruent triangles.
Since corresponding parts of congruent figures are congruent, and are congruent angles.

By drawing the diagonal and using a similar procedure, it can be shown that and are also congruent angles.

Furthermore, it can be determined whether a quadrilateral is a parallelogram just by looking at its opposite angles.

Rule

Converse Parallelogram Opposite Angles Theorem

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

A parallelogram with congruent opposite angles

Based on the above diagram, the following statement holds true.

Proof

Assume that is a quadrilateral with opposite congruent angles. It should be noted that congruent angles have the same measure. Then, let be the measure of and and be the measure of and

By the Polygon Interior Angles Theorem, the sum of the interior angles of a quadrilateral is With this information, a relation can be found between the consecutive interior angles of
Simplify
Since the consecutive interior angles of are supplementary. Therefore, by the Converse Consecutive Interior Angles Theorem, it can be concluded that opposite sides of are parallel.
A polygon ABCD with one movable vertex
Consequently, by the definition of a parallelogram, is a parallelogram.

Completed Proof

Proof:
Proof of the theorem

Explore

Investigating the Diagonals of a Parallelogram

In the following applet, a parallelogram is shown. By dragging one of its vertices, different types of parallelograms such as squares, rectangles, and rhombi can be formed. By using the measuring tool provided, investigate what relationships exist between the diagonals of each parallelogram.
parallelogram
After investigating each parallelogram type, what relationships between the diagonals of the parallelograms were discovered?

Discussion

Properties of a Parallelogram's Diagonals

A conclusion that can be made from the previous exploration is that the diagonals of a parallelogram intersect at their midpoint. This is explained in detail in the following theorem.

Rule

Parallelogram Diagonals Theorem

In a parallelogram, the diagonals bisect each other.

If is a parallelogram, then the following statement holds true.


Proof

Using Congruent Triangles

This theorem can be proven by using congruent triangles. Consider the parallelogram and its diagonals and Let be the point intersection of the diagonals.

Since and are parallel, by the Alternate Interior Angles Theorem it can be stated that and that Furthermore, by the Parallelogram Opposite Sides Theorem it can be said that

Here, two angles of and their included side are congruent to two angles of and their included side. Therefore, by the Angle-Side-Angle Congruence Theorem and are congruent triangles.
Since corresponding parts of congruent triangles are congruent, is congruent to and is congruent to

By the definition of a segment bisector, both segments and are bisected at point Therefore, it has been proven that the diagonals of a parallelogram bisect each other.

Also, a quadrilateral can be identified as a parallelogram just by looking at its diagonals.

Rule

Converse Parallelogram Diagonals Theorem

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

Quadrilateral with diagonals that bisect each other

Based on the diagram above, the following relation holds true.

If and bisect each other, then is a parallelogram.

Proof

Let be point of intersection of the diagonals of a quadrilateral. Since the diagonals bisect each other, is the midpoint of each diagonal.

Quadrilateral with diagonals that bisect each other

Because and are vertical angles, they are congruent by the Vertical Angles Theorem. Therefore, by the Side-Angle-Side Congruence Theorem, and are congruent triangles. Since corresponding parts of congruent figures are congruent, and are congruent.

Quadrilateral with diagonals that bisect each other

Applying a similar reasoning, it can be concluded that and are congruent triangles. Consequently, and are also congruent.

Quadrilateral with diagonals that bisect each other

Finally, since both pairs of opposite sides of quadrilateral are congruent, the Converse Parallelogram Opposite Sides Theorem states that is a parallelogram.

Quadrilateral with diagonals that bisect each other

Discussion

Diagonals of a Rectangle

It can be determined whether a parallelogram is a rectangle just by looking at its diagonals. Furthermore, if a parallelogram is a rectangle, a statement about its diagonals can be made.

Rule

Rectangle Diagonals Theorem

A parallelogram is a rectangle if and only if its diagonals are congruent.

rectangle with its diagonals marked

Based on the diagram, the following relation holds true.

is a rectangle

Two proofs will be provided for this theorem. Each proof will consist of two parts.

  • Part I: If is a rectangle, then
  • Part II: If then is a rectangle.

Proof

Using Similar Triangles

This proof will use similar triangles to prove the theorem.

Part I: Is a Rectangle

Suppose is a rectangle and and are its diagonals. By the Parallelogram Opposite Sides Theorem, the opposite sides of a parallelogram are congruent. Therefore, and are congruent. Additionally, by the Reflexive Property of Congruence, or is congruent to itself.

rectangle with its diagonals marked
Since the angles of a rectangle are right angles, by the definition of congruent angles, . Consequently, and have two pairs of congruent sides and congruent included angles.
Therefore, by the Side-Angle-Side Congruence Theorem, the triangles are congruent.
Because corresponding parts of congruent triangles are congruent, and which are the diagonals of are congruent.

Part II: Is a Rectangle

Consider the parallelogram and its diagonals and such that

rectangle with its diagonals marked

By the Parallelogram Opposite Sides Theorem, Additionally, by the Reflexive Property of Congruence, is congruent to itself.

rectangle with its diagonals marked
The sides of are congruent to the sides of
Therefore, by the Side-Side-Side Congruence Theorem, Moreover, since corresponding parts of congruent triangles are congruent, is congruent to
Note that and are consecutive angles. By the Parallelogram Consecutive Angles Theorem, these angles are supplementary. With this information, it can be concluded that both and are right angles.
Additionally, by the Parallelogram Opposite Angles Theorem, and Because all of the angles are right angles, is a rectangle.

Proof

Using Transformations

This proof will use transformations to prove the theorem.

Part I: Is a Rectangle

Consider the rectangle and its diagonals and Let be the point of intersection of the diagonals.

rectangle with its diagonals marked

Let and be the midpoints of and Then, a line through and the midpoints and can be drawn.

rectangle with its diagonals marked
Note that and are congruent segments. Because congruent segments have the same length, the distance between and equals the distance between and Therefore, is the image of after a reflection across Similarly, is the image of after the same reflection.
rectangle with its diagonals marked
Since lies on a reflection across maps onto itself.
Reflection Across
Preimage Image
The table shows that the images of the vertices of are the vertices of Therefore, is the image of after a reflection across Since a reflection is a rigid motion, this proves that the triangles are congruent.
rectangle with its diagonals marked
Because corresponding parts of congruent figures are congruent, and Additionally, by the Parallelogram Diagonals Theorem, the diagonals of the rectangle bisect each other. Therefore, all four segments are congruent.
rectangle with its diagonals marked
Each diagonal of the parallelogram consists of the same two congruent segments. By the Segment Addition Postulate, the diagonals are congruent.

Part II: Is a Rectangle

Consider the parallelogram and its diagonals and such that By the Parallelogram Diagonals Theorem, the diagonals of a rectangle bisect each other at

rectangle with its diagonals marked

By the Parallelogram Opposite Sides Theorem, and

rectangle with its diagonals marked

Let and be the midpoints of and Then, a line through and the midpoints and can be drawn.

rectangle with its diagonals marked
As shown before, and are the respective images of and after a reflection across Therefore, since is the image of after a reflection across the triangles are congruent.
rectangle with its diagonals marked
Let and be the midpoints of of and By following the same reasoning, is the image of after a reflection across Therefore, the triangles are congruent.
rectangle with its diagonals marked
The parallelogram consists of four triangles in which the opposite triangles are congruent. Therefore, the corresponding angles of these triangles are congruent. Additionally, because all triangles are isosceles, the angles opposite congruent sides are congruent as well.
rectangle with its diagonals marked
Each angle of the parallelogram is the sum of the same two congruent angles. Therefore, all angles of the parallelogram are congruent.
Moreover, by the Parallelogram Consecutive Angles Theorem, and are supplementary. With this information, it can be concluded that both angles are right triangles.
Because all of the angles are congruent, the angles of the parallelogram are right triangles. Therefore, is a rectangle.

Discussion

Diagonals of a Rhombus

As with rectangles, it can also be determined whether a parallelogram is a rhombus just by looking at its diagonals.

Rule

Rhombus Diagonals Theorem

A parallelogram is a rhombus if and only if its diagonals are perpendicular.

Parallelogram with diagonals drawn

Based on the diagram, the following relation holds true.

Parallelogram is a rhombus

Proof

This proof will be written in two parts.

If a Parallelogram Is a Rhombus, Then Its Diagonals Are Perpendicular

A rhombus is a parallelogram with four congruent sides. By the Parallelogram Diagonals Theorem, it can be said that its diagonals bisect each other. Let Let be a rhombus with at the midpoint of both diagonals.

Rhombus with diagonals and midpoint that bisect diagonals
Note that is congruent to and is congruent to Additionally, by the Reflexive Property of Congruence, is congruent to itself. Therefore, by the Side-Side-Side Congruence Theorem, is congruent to
Because corresponding parts of congruent triangles are congruent, and are congruent angles. Furthermore, these angles form a linear pair, which means they are supplementary. With this information, it can be concluded that both and are right angles.
This implies that is perpendicular to Therefore, the diagonals of a rhombus are perpendicular.

Parallelogram is a rhombus

If Its Diagonals Are Perpendicular, Then a Parallelogram is a Rhombus

Conversely, let be a parallelogram whose diagonals are perpendicular.

Parallelogram with perpendicular diagonals

By the Parallelogram Diagonals Theorem, the diagonals of the parallelogram bisect each other. If is the midpoint of both diagonals, then and are congruent.

Parallelogram with perpendicular diagonals and mindpoint of diagonals
Since and are perpendicular, and measure and thus are congruent angles. By the Reflexive Property of Congruence, is congruent to itself. This means that two sides and their included angle are congruent. By the Side-Angle-Side Congruence Theorem, and are congruent triangles.
Because corresponding parts of congruent figures are congruent, it can be said that is congruent to
Parallelogram with perpendicular diagonals and mindpoint of diagonals

Furthermore, by the Parallelogram Opposite Sides Theorem, is congruent to and is congruent to By the Transitive Property of Congruence, it follows that all sides of the parallelogram are congruent.

Parallelogram with perpendicular diagonals and mindpoint of diagonals

This means that if the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.

parallelogram is a rhombus

Example

Solving Problems Using the Diagonals of a Rhombus

Zosia is now listening to Dua Lipa at home. Staring at some of her album covers, Zosia decides to design a parallelogram as the background art for Dua's next cover! She has made a parallelogram in which the diagonals are perpendicular. To make a unique design, she wants to be sure of the length of

rhombus
Help Zosia draw the perfect design by finding the length of

Hint

If the diagonals of a parallelogram are perpendicular, then the quadrilateral is a rhombus.

Solution

By the Rhombus Diagonal Theorem, the diagonals of a parallelogram are perpendicular if and only if the quadrilateral is a rhombus. Therefore, since and are perpendicular, is a rhombus. This means that and have the same length. With this information, an equation in terms of can be written.
The above equation will be now solved for
The value of was found. Since the given quadrilateral is a rhombus, all sides are congruent and therefore have the same length. This means that the length of is the same as the length of To find it, will be substituted into the expression for
Evaluate right-hand side
The length of is As it has been previously said, all sides have the same length. Therefore, is also

Closure

Additional Applications of a Parallelogram's Properties

By using the theorems seen in this lesson, other properties can be derived. One of them is the Parallelogram Consecutive Angles Theorem.

Parallelogram Consecutive Angles Theorem

The consecutive angles of a parallelogram are supplementary.

Furthermore, the theorems seen in this lesson can be applied to different parallelograms in different contexts. Consider a square. By definition, all its angles are right angles, and all its sides are congruent. Therefore, a square is both a rectangle and a rhombus.

square

Therefore, by the Rectangle Diagonals Theorem and the Rhombus Diagonals Theorem, the diagonals of a square are congruent and perpendicular.

square