{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Show less Show more expand_more
{{ ability.description }} {{ ability.displayTitle }}
Lesson Settings & Tools
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
 Theorems About Parallelograms
Rule

Rectangle Diagonals Theorem

A parallelogram is a rectangle if and only if its diagonals are congruent.
rectangle with its diagonals marked

Based on the diagram, the following relation holds true.


is a rectangle

Two proofs will be provided for this theorem. Each proof will consist of two parts.

  • Part I: If is a rectangle, then
  • Part II: If then is a rectangle.

Proof

Using Similar Triangles

This proof will use similar triangles to prove the theorem.

Part I: Is a Rectangle

Suppose is a rectangle and and are its diagonals. By the Parallelogram Opposite Sides Theorem, the opposite sides of a parallelogram are congruent. Therefore, and are congruent. Additionally, by the Reflexive Property of Congruence, or is congruent to itself.

rectangle with its diagonals marked
Since the angles of a rectangle are right angles, by the definition of congruent angles, . Consequently, and have two pairs of congruent sides and congruent included angles.
Therefore, by the Side-Angle-Side Congruence Theorem, the triangles are congruent.
Because corresponding parts of congruent triangles are congruent, and which are the diagonals of are congruent.

Part II: Is a Rectangle

Consider the parallelogram and its diagonals and such that

rectangle with its diagonals marked

By the Parallelogram Opposite Sides Theorem, Additionally, by the Reflexive Property of Congruence, is congruent to itself.

rectangle with its diagonals marked
The sides of are congruent to the sides of
Therefore, by the Side-Side-Side Congruence Theorem, Moreover, since corresponding parts of congruent triangles are congruent, is congruent to
Note that and are consecutive angles. By the Parallelogram Consecutive Angles Theorem, these angles are supplementary. With this information, it can be concluded that both and are right angles.
Additionally, by the Parallelogram Opposite Angles Theorem, and Because all of the angles are right angles, is a rectangle.

Proof

Using Transformations

This proof will use transformations to prove the theorem.

Part I: Is a Rectangle

Consider the rectangle and its diagonals and Let be the point of intersection of the diagonals.

rectangle with its diagonals marked

Let and be the midpoints of and Then, a line through and the midpoints and can be drawn.

rectangle with its diagonals marked
Note that and are congruent segments. Because congruent segments have the same length, the distance between and equals the distance between and Therefore, is the image of after a reflection across Similarly, is the image of after the same reflection.
rectangle with its diagonals marked
Since lies on a reflection across maps onto itself.
Reflection Across
Preimage Image
The table shows that the images of the vertices of are the vertices of Therefore, is the image of after a reflection across Since a reflection is a rigid motion, this proves that the triangles are congruent.
rectangle with its diagonals marked
Because corresponding parts of congruent figures are congruent, and Additionally, by the Parallelogram Diagonals Theorem, the diagonals of the rectangle bisect each other. Therefore, all four segments are congruent.
rectangle with its diagonals marked
Each diagonal of the parallelogram consists of the same two congruent segments. By the Segment Addition Postulate, the diagonals are congruent.

Part II: Is a Rectangle

Consider the parallelogram and its diagonals and such that By the Parallelogram Diagonals Theorem, the diagonals of a rectangle bisect each other at

rectangle with its diagonals marked

By the Parallelogram Opposite Sides Theorem, and

rectangle with its diagonals marked

Let and be the midpoints of and Then, a line through and the midpoints and can be drawn.

rectangle with its diagonals marked
As shown before, and are the respective images of and after a reflection across Therefore, since is the image of after a reflection across the triangles are congruent.
rectangle with its diagonals marked
Let and be the midpoints of of and By following the same reasoning, is the image of after a reflection across Therefore, the triangles are congruent.
rectangle with its diagonals marked
The parallelogram consists of four triangles in which the opposite triangles are congruent. Therefore, the corresponding angles of these triangles are congruent. Additionally, because all triangles are isosceles, the angles opposite congruent sides are congruent as well.
rectangle with its diagonals marked
Each angle of the parallelogram is the sum of the same two congruent angles. Therefore, all angles of the parallelogram are congruent.
Moreover, by the Parallelogram Consecutive Angles Theorem, and are supplementary. With this information, it can be concluded that both angles are right triangles.
Because all of the angles are congruent, the angles of the parallelogram are right triangles. Therefore, is a rectangle.
Loading content