{{ item.displayTitle }}

No history yet!

Student

Teacher

{{ item.displayTitle }}

{{ item.subject.displayTitle }}

{{ searchError }}

{{ courseTrack.displayTitle }} {{ statistics.percent }}% Sign in to view progress

{{ printedBook.courseTrack.name }} {{ printedBook.name }} a

$\dfrac{y}{\text{-}5} \geq 5$

MultNegIneqMultiply by $\text{-}5$ and flip inequality sign

$y \leq \text{-}25$

b

Let's start by multiplying both sides by $7.$ Then, we can collect all $x$-terms on one side.

$\text{-}3x \leq \dfrac{20-x}{7}$

MultIneq$\text{LHS}\cdot 7 \leq \text{RHS} \cdot 7$

$\text{-}21x \leq 20-x$

AddIneq$\text{LHS}+x\leq\text{RHS}+x$

$\text{-}20x \leq 20$

DivNegIneqDivide by $\text{-}20$ and flip inequality sign

$x \geq \text{-}1$

c

Here we can subtract $3x$ and $8$ from both sides to simplify the inequality. Further, we'll divide both sides by $\text{-}10$ and remember to flip the inequality sign.

$\text{-}7x+8 \gt 3x+16$

SubIneq$\text{LHS}-3x\gt\text{RHS}-3x$

$\text{-}10x+8\gt 16$

SubIneq$\text{LHS}-8\gt\text{RHS}-8$

$\text{-}10x\gt 8$

DivNegIneqDivide by $\text{-}10$ and flip inequality sign

$x \lt \dfrac{8}{\text{-}10}$

WriteDecWrite as a decimal

$x \lt \text{-}0.8$

$x \lt \text{-}0.8$ is the solution set of the inequality.