{{ toc.name }}
{{ toc.signature }}
{{ toc.name }} {{ 'ml-btn-view-details' | message }}
{{ stepNode.name }}
{{ 'ml-toc-proceed' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
{{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }} {{ ability.displayTitle }}
{{ 'ml-heading-lesson-settings' | message }}
{{ 'ml-lesson-show-solutions' | message }}
{{ 'ml-lesson-show-hints' | message }}
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount}}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount}}
{{ 'ml-lesson-time-estimation' | message }}

Reference

Properties of Inequalities

Rule

Anti Reflexive Property of Inequality

A real number can never be less than or greater than itself.

and

This property is an axiom. Therefore, it can be accepted as true without proof.

Rule

Anti Symmetric Property of Inequality

For any two real numbers and if is less than then cannot be less than

If then

Alternatively, if is greater than then cannot be greater than

If then

This property is an axiom. Therefore, it can be accepted as true without proof.

Rule

Transitive Property of Inequality

Let and be real numbers. If is less than and is less than then is less than

If and then

This property also applies to other types of inequalities — and

  • If and then
  • If and then
  • If and then
Since this property is an axiom, it does not need proof to be accepted as true.

Rule

Addition Property of Inequality

Adding the same number to both sides of an inequality generates an equivalent inequality. This equivalent inequality will have the same solution set and the inequality sign remains the same. Let and be real numbers such that Then, the following conditional statement holds true.

If then

This property holds for the other types of inequalities.
The Addition Property of Inequality for All Types of Inequalities

Proof

Addition Property of Inequality
The case when will be proven. The remaining cases can be proven similarly. Before starting the proof, the following biconditional statement needs to be considered.
Now, the Identity Property of Addition can be applied to the second part of the statement.

Rewrite as

Using the biconditional statement, the last inequality can be rewritten.
Finally, because the property is obtained.

If then