| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
A real number can never be less than or greater than itself.
x≮x and x≯x
For any two real numbers x and y, if x is less than y, then y cannot be less than x.
If x<y, then y<x.
Alternatively, if x is greater than y, then y cannot be greater than x.
If x>y, then y>x.
Let x, y, and z be real numbers. If x is less than y and y is less than z, then x is less than z.
If x<y and y<z, then x<z.
This property also applies to other types of inequalities — >, ≤, and ≥.
Adding the same number to both sides of an inequality generates an equivalent inequality. This equivalent inequality will have the same solution set and the inequality sign remains the same. Let x, y, and z be real numbers such that x<y. Then, the following conditional statement holds true.
If x<y, then x+z<y+z.
Identity Property of Addition
Rewrite 0 as z−z
Commutative Property of Addition
-a−b=-(a+b)
Add parentheses
If x<y, then x+z<y+z.
Subtracting the same number from both sides of an inequality produces an equivalent inequality. The solution set and inequality sign of this equivalent inequality does not change. Let x, y, and z be real numbers such that x<y. Then, the following conditional statement holds true.
If x<y, then x−z<y−z.
Identity Property of Addition
Rewrite 0 as (-z)−(-z)
Commutative Property of Addition
Remove parentheses
-a−b=-(a+b)
Commutative Property of Addition
Add parentheses
If x<y, then x−z<y−z.
Multiplying both sides of an inequality by a nonzero real number z produces an equivalent inequality. The following conditions about z need to be considered when applying this property.
Positive z | If z is positive, the inequality sign remains the same. |
---|---|
Negative z | If z is negative, the inequality sign needs to be reversed to produce an equivalent inequality. |
For example, let x, y, and z be real numbers such that x<y and z=0. Then, the equivalent inequalities can be written depending on the sign of z.
The case when x<y will be proven. The remaining cases can be proven following a similar reasoning. Before starting the proof, the following properties of real numbers need to be considered.
Using these properties, the following conditional statements can be proven.
Each conditional statement will be analyzed separately.
Distribute (-z)
(-a)b=-ab
a−(-b)=a+b
LHS+zy>RHS+zy
If x<y and z<0, then zx>zy.
Dividing both sides of an inequality by a nonzero real number z produces an equivalent inequality. However, the following conditions need to be considered.
Positive z | If z is positive, the inequality sign remains the same. |
---|---|
Negative z | If z is negative, the inequality sign needs to be reversed to produce an equivalent inequality. |
For example, let x, y, and z be real numbers such that x<y and z=0. Then, the equivalent inequalities can be written depending on the sign of z.
The case when x<y will be proven. The remaining cases can be proven following a similar reasoning. Before starting the proof, the following properties of real numbers need to be considered.
Using these properties, the following conditional statements can be proven.
Each case will be analyzed separately.
If x<y and z>0, then zx<zy.
Put minus sign in numerator
-(b−a)=a−b
Write as a difference of fractions
LHS+zy>RHS+zy
If x<y and z<0, then zx>zy.