Sign In
In order to find the side lengths of the polygon use the Distance Formula and, to find the area, separate the polygon into small rectangles and a triangle.
Perimeter: 32+3sqrt(2) units
Area: 49.5 units square
We will draw a polygon ABCDEFG with the following vertices. A(1,1), B(10,1), C(10,8), D(7,5), E(4,5), F(4,8), G(1,8) Let's plot these points on the coordinate plane and connect them to draw the polygon.
Substitute ( 1,1) & ( 10,1)
Subtract terms
Calculate power
Add terms
Calculate root
Side | Coordinates | sqrt((x_1-x_2)^2+(y_1-y_2)^2) | Length |
---|---|---|---|
AB | A( 1,1) and B( 10,1) | sqrt(( 1- 10)^2+( 1- 1)^2) | AB=9 |
BC | B( 10,1) and C( 10,8) | sqrt(( 10- 10)^2+( 1- 8))^2) | BC=7 |
CD | C( 10,8) and D( 7,5) | sqrt(( 10- 7)^2+( 8- 5)^2) | CD=3sqrt(2) |
DE | D( 7,5) and E( 4,5) | sqrt(( 7- 4)^2+( 5- 5)^2) | DE=3 |
EF | E( 4,5) and F( 4,8) | sqrt(( 4- 4)^2+( 5- 8)^2) | EF=3 |
FG | F( 4,8) and G( 1,8) | sqrt(( 4- 1)^2+( 8- 8)^2) | FG=3 |
GA | G( 1,8) and A( 1,1) | sqrt(( 1- 1)^2+( 8- 1)^2) | GA=7 |
Substitute values
Add terms
We will find the area of each rectangle A_R and the area of the triangle A_T by using the formulas. A_R= b h and A_T= b h/2 In the formula, b is the base and h is the height.
Area | Base | Height | A=bh or A=bh/2 | Result |
---|---|---|---|---|
A_1 | b=3 | h=7 | A_1= 3* 7 | 21 |
A_2 | b=3 | h=4 | A_2= 3* 4 | 12 |
A_3 | b=3 | h=4 | A_3= 3* 4 | 12 |
A_4 | b=3 | h=3 | A_4=3* 3/2 | 4.5 |