Pearson Geometry Common Core, 2011
PG
Pearson Geometry Common Core, 2011 View details
8. Perimeter, Circumference, and Area
Continue to next subchapter

Exercise 66 Page 67

Practice makes perfect
a AB is the distance between the points A and B. To find this distance, we can use the Distance Formula.
d=sqrt((x_2-x_1)^2+(y_2-y_1)^2) Let's substitute the given coordinates, A(-1,1) and B(-4,-5), into this formula and simplify.
d = sqrt((x_2-x_1)^2 + (y_2-y_1)^2)
d = sqrt(( -4-( -1))^2 + ( -5- 1)^2)
d=sqrt((-4+1)^2+(-5-1)^2)
d=sqrt((-3)^2+(-6)^2)
d=sqrt(9+36)
d=sqrt(45)
d=6.7082...
d≈6.7
The distance between A and B is AB≈6.7.
b Now we want to find the midpoint of the line segment AB. We can use the Midpoint Formula.
M ( x_1+x_22, y_1+y_22) Let's substitute the coordinates into this formula.
M(x_1+x_2/2,y_1+y_2/2)
M(-1+( -4)/2,1+( -5)/2)
M(-1-4/2,1-5/2)
M(-5/2,-4/2)
M(-2.5,-2)
The midpoint of AB is the point (-2.5, 2).