McGraw Hill Integrated II, 2012
MH
McGraw Hill Integrated II, 2012 View details
5. Solving Quadratic Equations by Using the Quadratic Formula
Continue to next subchapter

Exercise 1 Page 137

Identify a, b and c.

- 3, 5

Practice makes perfect
We will use the Quadratic Formula to solve the given quadratic equation. ax^2+ bx+ c=0 ⇕ x=- b± sqrt(b^2-4 a c)/2 a We first need to identify the values of a, b, and c. x^2-2x-15=0 ⇕ 1x^2+( - 2)x+( - 15)=0 We see that a= 1, b= - 2, and c= - 15. Let's substitute these values into the Quadratic Formula.
x=- b±sqrt(b^2-4ac)/2a
x=- ( -2)±sqrt(( - 2)^2-4( 1)( - 15))/2( 1)
â–Ľ
Solve for x and Simplify
x=2±sqrt((- 2)^2-4(1)(- 15))/2(1)
x=2±sqrt(4-4(1)(- 15))/2(1)
x=2±sqrt(4-4(- 15))/2
x=2±sqrt(4+60)/2
x=2±sqrt(64)/2
x=2± 8/2
x=2(1± 4)/2
x= 1 ± 4
The solutions for this equation are x= 4± 22. Let's separate them into the positive and negative cases.
x=1 ± 4
x_1=1 - 4 x_2=1 + 4
x_1=- 3 x_2=5

Using the Quadratic Formula, we found that the solutions of the given equation are x_1= - 3 and x_2= 5.