Sign In
| 12 Theory slides |
| 9 Exercises - Grade E - A |
| Each lesson is meant to take 1-2 classroom sessions |
Here are a few recommended readings before getting started with this lesson.
To be able to solve the tasks of the quest, the class first stopped at the infopoint to recall the Double-Angle Identities. These identities relate the trigonometric values of an angle to the trigonometric values of twice that angle.
The double-angle identities materialize when two angles with the same measure are substituted into the angle sum identities.
cl Sine: & sin 2θ=2sin θ cos θ [0.7em] & cos 2θ =cos^2 θ - sin^2 θ Cosine: & cos 2θ = 2cos^2 θ - 1 & cos 2θ = 1 - 2sin^2 θ [0.2cm] Tangent: & tan 2θ =2tanθ/1-tan^2 θ
Start by writing the Angle Sum Identity for sine and cosine. sin(x + y) = sin x cos y + cos x sin y cos(x + y) = cos x cos y - sin x sin y
Let x=θ and y=θ. With this, x+y becomes 2θ. Then, these two formulas can be rewritten in terms of θ. sin 2θ = sinθ cosθ + cosθ sinθ cos 2θ = cosθ cosθ - sinθ sinθ
Approaching the first equation, the Commutative Property of Multiplication can be applied to the second term of its right-hand side. Then, by adding the terms on the right-hand side of this equation, the formula for sin 2θ is obtained.
sin 2θ = sinθ cosθ + sinθ cosθ ⇓ sin 2θ = 2sinθ cosθ ✓
Approaching the second equation, the Product of Powers Property can be used to rewrite its right-hand side. By doing this, the first identity for the cosine of the double of an angle is obtained.
cos 2θ = cosθ cosθ - sinθ sinθ ⇓ cos 2θ = cos^2θ - sin^2θ ✓
sin^2 θ= 1-cos^2 θ
Distribute -1
Add terms
Write as a difference of fractions
Cross out common factors
Cancel out common factors
a^m/b^m=(a/b)^m
a* b/c=a*b/c
sin(θ)/cos(θ)=tan(θ)
To calculate the exact value of cos 120^(∘), these steps can be followed.
Rewrite 120^(∘) as 2* 60^(∘)
cos 2θ = 2cos^2 θ - 1
cos 60^(∘) = 1/2
Find the value of sinθ by using one of the Pythagorean Identities.
cosθ= 2/5
(a/b)^m=a^m/b^m
Calculate power
LHS-4/25=RHS-4/25
Rewrite 1 as 25/25
Subtract fractions
sinθ= sqrt(21)/5, cosθ= 2/5
Multiply fractions
a*b/c= a* b/c
sinθ= 1/3
(a/b)^m=a^m/b^m
Calculate power
LHS-1/9=RHS-1/9
Rewrite 1 as 9/9
Subtract fractions
sqrt(LHS)=sqrt(RHS)
sqrt(a/b)=sqrt(a)/sqrt(b)
Split into factors
Calculate root
sinθ= 1/3, cosθ= - 2sqrt(2)/3
a(- b)=- a * b
Multiply fractions
a*b/c= a* b/c
sinθ= 1/3, cosθ= - 2sqrt(2)/3
(- a)^2=a^2
(a/b)^m=a^m/b^m
Calculate power
Multiply
Subtract fractions
sin 2θ= - 4sqrt(2)/9, cos 2θ= 7/9
.a/b /c/d.=a/b*d/c
Multiply fractions
Cross out common factors
Cancel out common factors
Before moving to the next station, the class stopped at another infopoint to learn about the Half-Angle Identities.
The half-angle identities are special cases of angle difference identities. To evaluate trigonometric functions of half an angle, the following identities can be applied.
sin θ/2 &= ±sqrt(1 - cosθ/2) [0.75em] cos θ/2 &= ±sqrt(1 + cosθ/2) [0.75em] tan θ/2 &= ±sqrt(1 - cosθ/1 + cosθ)
The sign of each formula is determined by the quadrant where the angle θ2 lies.
These identities are useful when finding the exact value of the sine, cosine, or tangent at a given angle.
First, write two of the Double-Angle Identities for cosine. cos 2x &= 1 - 2sin^2 x cos 2x &= 2cos^2 x - 1
LHS-1=RHS-1
.LHS /(-2).=.RHS /(-2).
Rearrange equation
Put minus sign in front of fraction
-(b-a)=a-b
sqrt(LHS)=sqrt(RHS)
sin θ/2 &= ±sqrt(1-cos(2* θ2)/2) & ⇓ sin θ/2 &= ±sqrt(1-cosθ/2) ✓
LHS+1=RHS+1
.LHS /2.=.RHS /2.
Rearrange equation
sqrt(LHS)=sqrt(RHS)
cos θ/2 &= ±sqrt(1+cos (2* θ2)/2) & ⇓ cos θ/2 &= ±sqrt(1+cosθ/2) ✓
sin θ2= ±sqrt(1 - cosθ/2), cos θ/2= ±sqrt(1 + cosθ/2)
sqrt(a)/sqrt(b)=sqrt(a/b)
.a /b./.c /d.=a/b*d/c
Cross out common factors
Cancel out common factors
Multiply fractions
Consider the calculation of the exact value of cos 15^(∘).
Rewrite 15^(∘) as 30^(∘)/2
cos θ/2=sqrt(1+cos θ/2)
cos 30^(∘) =sqrt(3)/2
θ= 30^(∘)
Calculate quotient
\ifnumequal{30}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{30}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{30}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{30}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{30}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{30}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{30}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{30}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{30}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{30}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{30}{360}{\cos\left(360^\circ\right)=1}{}
1=a/a
Subtract fractions
.a/b /c.= a/b* c
sqrt(a/b)=sqrt(a)/sqrt(b)
Calculate root
θ= 45^(∘)
Calculate quotient
\ifnumequal{45}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{45}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{45}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{45}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{45}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{45}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{45}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{45}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{45}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{45}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{45}{360}{\cos\left(360^\circ\right)=1}{}
1=a/a
Add fractions
.a/b /c.= a/b* c
sqrt(a/b)=sqrt(a)/sqrt(b)
Calculate root
Calculate quotient
\ifnumequal{30}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{30}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{30}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{30}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{30}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{30}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{30}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{30}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{30}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{30}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{30}{360}{\cos\left(360^\circ\right)=1}{}
1=a/a
Add and subtract fractions
.a/b /c/d.=a/b*d/c
Multiply fractions
a/b=.a /2./.b /2.
a/b=a * (2-sqrt(3))/b * (2-sqrt(3))
(a+b)(a-b)=a^2-b^2
a* a=a^2
(a-b)^2=a^2-2ab+b^2
Calculate power
Add and subtract terms
a/1=a
sinθ= - 15/17
(- a)^2 = a^2
(a/b)^m=a^m/b^m
Calculate power
LHS-225/289=RHS-225/289
Rewrite 1 as 289/289
Subtract fractions
sqrt(LHS)=sqrt(RHS)
sqrt(a/b)=sqrt(a)/sqrt(b)
Calculate root
cosθ= 8/17
Rewrite 1 as 17/17
Subtract fractions
.a/b /c.= a/b* c
sqrt(a/b)=sqrt(a)/sqrt(b)
Calculate root
cosθ= 8/17
Rewrite 1 as 17/17
Add fractions
.a/b /c.= a/b* c
sqrt(a/b)=sqrt(a)/sqrt(b)
Calculate root
Use the Pythagorean Identity and the Double-Angle Identity for sine.
LHS+sin^2 2x=RHS+sin^2 2x
LHS-4cos^4 x=RHS-4cos^4 x
Factor out 4cos^2 x
1 - cos^2(θ) = sin^2(θ)
sin^2(θ)=(sin(θ))^2
sin(2θ)=2sin(θ)cos(θ)
(a * b)^m=a^m* b^m
Rewrite one or both sides of the equation by using the Half-Angle Identity or the Double-Angle Identity.
In order to check whether the equation Zosia formed is an identity, rewrite the sides until they match. There are two ways to do this — using the Half-Angle Identity or using the Double-Angle Identity. Each way will be shown one at a time.
Substitute expressions
sqrt(a)*sqrt(b)=sqrt(a* b)
Multiply fractions
(a-b)(a+b)=a^2-b^2
1^a=1
1 - cos^2(θ) = sin^2(θ)
sqrt(a/b)=sqrt(a)/sqrt(b)
Calculate root
Start by reviewing the Double-Angle Identity. sin 2θ=2sinθcosθ If instead of 2θ there was θ, the identity would look the following way. sin θ=2sinθ/2cos θ/2 Finally, by dividing both sides of the identity by 2, the equation that should have been verified can be obtained. sinθ/2=sinθ/2cos θ/2 Therefore, the equation Zosia formed is indeed an identity.
cos(2θ)=cos^2(θ)-sin^2(θ)
a^2-b^2=(a+b)(a-b)
Associative Property of Addition
Cross out common factors
Cancel out common factors
a/1=a
Use the Double-Angle Identity for sine and the Tangent Identity.
H= v^2/2gsin^2 θ, D= v^2/gsin2θ
a/c* b = a* b/c
.a /b./.c /d.=a/b*d/c
Multiply fractions
Cross out common factors
Cancel out common factors
sin(2θ)=2sin(θ)cos(θ)
Multiply
Cross out common factors
Cancel out common factors
Write as a product of fractions
tan(θ)=sin(θ)/cos(θ)
Let's assume that cos2a is equal to cos2b. We will discuss if this statement always implies that a=b. Let's first use the Double Angle Identity for cosine to express cos2a and cos2b in terms of the trigonometric ratios of the angles a and b. cos2 a &= cos^2 a-sin^2 a cos2 b &= cos^2 b-sin^2 b Because of how cosine values on the unit circle relate to one another, let's arbitrarily take two supplementary angles, a= 30^(∘) and b= 150^(∘), and substitute them into our equations. cos2( 30^(∘)) &= cos^2 30^(∘)-sin^2 30^(∘) cos2( 150^(∘)) &= cos^2 150^(∘)-sin^2 150^(∘) Now, we will analyze the angles of 30^(∘) and 150^(∘) on a unit circle. Let A and B be the points that these angles create on the unit circle, respectively.
Then, the coordinates of A and B can be expressed as follows. A(cos 30^(∘), sin 30^(∘)) B(cos 150^(∘), sin 150^(∘)) From the diagram, we can see that A and B have the same y-coordinate and opposite x-coordinates.
This means that the following statements are true. cos 30^(∘) &=- cos 150^(∘) sin 30^(∘) &= sin 150^(∘) With this information, we can substitute cos 30^(∘) with - cos 150^(∘) and sin 30^(∘) with sin 150^(∘).
Note that the right-hand side of this equation is the same as the right-hand side of the equation for cos 2(150^(∘)). cos2(30^(∘)) &= cos^2 150^(∘)-sin^2 150^(∘) cos2(150^(∘)) &= cos^2 150^(∘)-sin^2 150^(∘) This means that the left-hand sides are also equal. cos2( 30^(∘))&=cos2( 150^(∘)) &⇕ cos 60^(∘) &= cos 300^(∘) However, a= 30^(∘) is not equal to b= 150^(∘). Therefore, we can conclude that even though cos 2a=cos 2b, a does not have to be equal to b.