{{ tocSubheader }}
| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
There are several properties and identities that are useful when simplifying expressions or solving equations dealing with absolute values. For any two real numbers a and b, the following relationships and identities hold true.
Property | Algebraic Representation |
---|---|
Non-negativity | ∣a∣≥0 |
Symmetry | ∣-a∣=∣a∣ |
Idempotence | ∣∣a∣∣=∣a∣ |
Positive-definiteness | ∣a∣=0 ⇔ a=0 |
Identity of Indiscernibles | ∣a−b∣=0 ⇔ a=b |
Multiplicativity | ∣ab∣=∣a∣⋅∣b∣ |
Preservation of Division | ∣∣∣∣ba∣∣∣∣=∣b∣∣a∣ if b=0 |
Subadditivity | ∣a+b∣≤∣a∣+∣b∣ |
Triangle Inequality | ∣a−b∣≤∣a−c∣+∣c−b∣ |