{{ toc.name }}
{{ toc.signature }}
{{ toc.name }} {{ 'ml-btn-view-details' | message }}
{{ stepNode.name }}
{{ 'ml-toc-proceed' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
{{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }} {{ ability.displayTitle }}
{{ 'ml-heading-lesson-settings' | message }}
{{ 'ml-lesson-show-solutions' | message }}
{{ 'ml-lesson-show-hints' | message }}
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount}}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount}}
{{ 'ml-lesson-time-estimation' | message }}
Two triangles are congruent if their corresponding sides and angles are congruent. However, there could be cases where not all side lengths or angle measures are known. The good news is that congruence can still be verified depending on which parts are known.

Catch-Up and Review

Here are a few recommended readings before getting started with this lesson.

The primary goal of this lesson is to investigate exactly how much information about a pair of triangles has to be known in order to conclude that the triangles are congruent.

Explore

Investigating Congruence of Triangles Given Two Sides and the Included Angle

In the previous exploration, it was seen that a pair of triangles can have corresponding congruent angles but not be congruent triangles. Therefore, relying only on the relationship of only angles is not a valid criterion.

Angle-Angle-Angle is a valid criterion for proving triangle congruence.

Use segments and to construct two different triangles, one at a time, in such a way that the angle formed at has the same measure in both triangles.
Applet to construct different triangles, Given two sides
Once the two triangles have been drawn, find the side lengths and angle measures of each triangle. Can any relationship between the triangles be found? Repeat the process a few times to see if the relationship remains true.

Discussion

Side-Angle-Side Congruence Theorem

The previous exploration suggests that two triangles are congruent whenever they have two pairs of corresponding congruent sides and the corresponding included angles are congruent. In fact, this conclusion is formalized in the Side-Angle-Side Congruence Theorem

Example

Identifying Congruent Triangles

In the following diagram, triangles and are congruent, and is congruent to

Trapezoid ABCD, (major base DC and minor base AB) with diagonals AC and BD. The diagonals intersect at E.

How many more pairs of congruent triangles are there in the diagram? Name each congruent triangle pair.

Answer

There are two more pairs of congruent triangles.

Hint

Remember, if two triangles are congruent, then their corresponding sides and angles are congruent.

Solution

Start by highlighting the given pair of congruent triangles, and

Highlighting triangles ADE and BCE

Since these triangles are congruent, their corresponding parts are congruent. This implies that is congruent to

First Pair

Because and are parts of and respectively, consider triangles and
Separating Triangles ADC and BCD
Notice that is a common side for triangles and Because of the Reflexive Property of Congruence, is congruent to itself. Next, list the corresponding congruent parts between these two triangles.
By the Side-Angle-Side (SAS) Congruence Theorem, it can be concluded that and are congruent.

Second Pair

Next, consider triangles and Because and are congruent, and are congruent. Additionally, since and are congruent, is congruent to
Separating Triangles ABD and BAC
Below, the corresponding congruent parts between and are listed.
One more time, the Side-Angle-Side (SAS) Congruence Theorem can be used to conclude that triangles and are congruent.

Third Pair

The last two triangles to consider are triangles and Unlike the first two pairs, these dimensions seem to be quite different. Therefore, it can be concluded that they are not congruent.

Highlighting triangles ABE and DEC

Consequently, in the initial diagram, there are two more pairs of congruent triangles in addition to the given one.

Explore

Investigating Congruence of Triangles Given Two Angles and the Included Side

Use segment and the rays and to construct two different triangles, one at a time, in such a way that the following conditions are met.

  • The angle formed at has the same measure in both triangles.
  • The angle formed at has the same measure in both triangles.
Applet to construct different triangles, Given one side and two angles
Once the two triangles are drawn, find the side lengths and angle measures of each triangle. Is there any relationship between the triangles? Repeat the process a few times to see if the relationship remains true.

Discussion

Angle-Side-Angle Congruence Theorem

The following statement could be seen in the previous applet. When two triangles have two pairs of corresponding congruent angles, and the included corresponding sides are congruent, the triangles are then congruent. That leads to the second criteria for triangle congruence.

Example

Write Equations Based on Congruent Triangles

Consider the following diagram.

Quadrilateral PQRS with diagonal SQ, PQ=6,QR=4.5,RS=2y+x,PS=5x-3, m angle R = 50, m angle P = 8z+2, angles PQS and RSQ are congruent, and angles PSQ and RQS are congruent
What is the value of

Hint

Take note that is a common side for two triangles. Use the fact that if two triangles are congruent, their corresponding sides and angles are congruent.

Solution

Notice that is a common side for triangles and
Separating Triangles PQS and RSQ
By the Reflexive Property of Congruence, is congruent to itself. Additionally, and are congruent, as are and
Consequently, and are congruent because of the Angle-Side-Angle (ASA) Congruence Theorem. Therefore, the corresponding sides and angles are congruent.
By definition, congruent angles have the same measure, and congruent segments have the same length. Therefore, the congruence statements on the right-hand side support the formation of the following three equations.
By solving Equation (I), the value of can be found.
Solve for
Next, solve Equation (III) to find the value of
Solve for
Then, the value of can be found by substituting into the Equation (II) and solving the resulting equation for
Solve for
Finally, the required sum can be calculated by substituting the values found for and

Explore

Congruence of Triangles Given Three Pairs of Congruent Sides

At the beginning of the lesson, it was shown that the Angle-Angle-Angle is not a valid criterion for determining triangle congruence. Next, using the following applet, it will be investigated if the Side-Side-Side is a valid criterion. Use segments and to construct two different triangles. Construct the triangles one at a time.
Applet to construct different triangles, Given three sides
Once the two triangles are drawn, find the angle measures of each triangle. Is there any relationship between the triangles? Repeat the process a couple of times to see if the relationship holds true.

Explore

Congruence of Triangles Given Two Angles and a Nonincluded Side

Notice that the ASA criterion requires the congruent sides to be included between the two pairs of corresponding congruent angles. Using the following applet, investigate what happens when the congruent sides are not the included sides.

Use segment and the rays and to construct two different triangles, one at a time, in such a way that these conditions are met:

  • The angle formed at has the same measure in both triangles.
  • The angle formed at the intersection of the rays, has the same measure in both triangles.
Applet to construct different triangles, Given one side and two angles
Once the two triangles are drawn, find the side lengths and angle measures of each triangle. Is there any relationship between the triangles? Repeat the process a couple of times to see if the relationship holds true.

Discussion

Angle-Angle-Side Congruence Theorem

As seen in the previous exploration, the Angle-Angle-Side condition is a valid criterion for triangle congruence.

Example

Proving Congruence in Triangles

Dylan bought a new boomerang to play with his friends next summer. In the drawing printed on the boomerang, and are congruent, and and are congruent.

Traditional shaped boomerang with two overlapping triangles

Show that is congruent to

Answer

See solution.

Hint

Separate triangles and and notice they have a common angle. Then, use the Angle-Angle-Side (AAS) Congruence Theorem.

Solution

Start by separating and from the design.
Separating triangles ABE and CBF
Notice that is common to both triangles. By the Reflexive Property of Congruence, is congruent to itself. Also, it is given that is congruent to and is congruent to
Applying the Angle-Angle-Side (AAS) Congruence Theorem, it is obtained that is congruent to Consequently, their corresponding parts are congruent, which means that is congruent to

Explore

Investigating Side-Side-Angle

With the help of the following applet, investigate if the Side-Side-Angle is a valid criterion for determining triangle congruence.

Use segments and to construct two different triangles in such a way that the angle formed at has the same measure in both triangles.
Applet to construct different triangles, Given two sides and one non included angle
Once the two triangles are drawn, find the side lengths and angle measures of each triangle. Are the triangles congruent in all cases?