{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Show less Show more expand_more
{{ ability.description }} {{ ability.displayTitle }}
Lesson Settings & Tools
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
 Dilation and Scale Factor
Concept

Rotation of Geometric Objects

A rotation is a transformation in which a figure is turned about a fixed point The number of degrees the figure rotates is the angle of rotation. The fixed point is called the center of rotation. Rotations map every point in the plane to its image such that one of the following statements is satisfied.
  • If is the center of rotation, then and are the same point.
  • If is not the center of rotation, then and are equidistant from , with measuring
Rotations are usually performed counterclockwise unless stated otherwise.
Rotation of point A around center P
Since rotations preserve side lengths and angle measures, they are rigid motions.
Loading content