{{ toc.signature }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}.

# {{ article.displayTitle }}

{{ article.intro.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
{{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }}
{{ 'ml-heading-lesson-settings' | message }}
 {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount}} {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount}} {{ 'ml-lesson-time-estimation' | message }}
Two triangles are congruent if their corresponding sides and angles are congruent. However, there could be cases where not all side lengths or angle measures are known. The good news is that congruence can still be verified depending on which parts are known.

### Catch-Up and Review

Here are a few recommended readings before getting started with this lesson.

The primary goal of this lesson is to investigate exactly how much information about a pair of triangles has to be known in order to conclude that the triangles are congruent.
Explore

## Investigating Congruence of Triangles Given Angles

Consider the following statement.

If two triangles have corresponding congruent angles, then they are congruent.
Using the following applet, investigate if that statement is true. To do so, try to map onto by applying different rigid motions to
After exploring different cases, what can be said about the given statement?

### Extra

How to Use the Applet

In the applet, rigid motions can be applied only on

• To translate select its interior region and slide.
• Point acts as the center of rotation and can be moved by dragging it.
• To rotate about click on any vertex of and drag it.
• The given line acts as a line of reflection which can be moved by dragging it. Similarly, its inclination can be changed by dragging either of its two points.
• To reflect across the line of reflection, push the Reflect button.
Explore

## Investigating Congruence of Triangles Given Two Sides and the Included Angle

In the previous exploration, it was seen that a pair of triangles can have corresponding congruent angles but not be congruent triangles. Therefore, relying only on the relationship of only angles is not a valid criterion.

Angle-Angle-Angle is a valid criterion for proving triangle congruence.

Use segments and to construct two different triangles, one at a time, in such a way that the angle formed at has the same measure in both triangles.
Once the two triangles have been drawn, find the side lengths and angle measures of each triangle. Can any relationship between the triangles be found? Repeat the process a few times to see if the relationship remains true.
Discussion

## Side-Angle-Side Congruence Theorem

The previous exploration suggests that two triangles are congruent whenever they have two pairs of corresponding congruent sides and the corresponding included angles are congruent. In fact, this conclusion is formalized in the Side-Angle-Side Congruence Theorem

If two sides and the included angle of a triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.

Based on the diagram above, the theorem can be written as follows.

### Proof

Side-Angle-Side Congruence Theorem

This proof will be developed based on the given diagram, but it is valid for any pair of triangles.

The primary purpose of the proof is finding a rigid motion or sequence of rigid motions that maps one triangle onto the other. This can be done in several ways. One of the ways will be shown here.
1
Translate So That Two Corresponding Vertices Match
expand_more
Translate so that is mapped onto If this translation maps onto the proof is complete.
Since the image of the translation does not match at least one more transformation is needed.
2
Rotate So That Two Corresponding Sides Match
expand_more
Rotate counterclockwise about so that a pair of corresponding sides match. If the image of this transformation is the proof is complete. Note that this rotation maps onto Therefore, the rotation maps onto
As before, the image does not match Therefore, a third rigid motion is required.
3
Reflect So That Two More Corresponding Sides Match
expand_more
Reflect across Because reflections preserve angles, is mapped onto Additionally, it is given that Therefore, is mapped onto which gives that is mapped onto
This time the image matches
Consequently, after a sequence of rigid motions, can be mapped onto This means that and are congruent triangles. The proof is complete.
Example

## Identifying Congruent Triangles

In the following diagram, triangles and are congruent, and is congruent to

How many more pairs of congruent triangles are there in the diagram? Name each congruent triangle pair.

There are two more pairs of congruent triangles.

### Hint

Remember, if two triangles are congruent, then their corresponding sides and angles are congruent.

### Solution

Start by highlighting the given pair of congruent triangles, and

Since these triangles are congruent, their corresponding parts are congruent. This implies that is congruent to

### First Pair

Because and are parts of and respectively, consider triangles and
Notice that is a common side for triangles and Because of the Reflexive Property of Congruence, is congruent to itself. Next, list the corresponding congruent parts between these two triangles.
By the Side-Angle-Side (SAS) Congruence Theorem, it can be concluded that and are congruent.

### Second Pair

Next, consider triangles and Because and are congruent, and are congruent. Additionally, since and are congruent, is congruent to
Below, the corresponding congruent parts between and are listed.
One more time, the Side-Angle-Side (SAS) Congruence Theorem can be used to conclude that triangles and are congruent.

### Third Pair

The last two triangles to consider are triangles and Unlike the first two pairs, these dimensions seem to be quite different. Therefore, it can be concluded that they are not congruent.

Consequently, in the initial diagram, there are two more pairs of congruent triangles in addition to the given one.

Explore

## Investigating Congruence of Triangles Given Two Angles and the Included Side

Use segment and the rays and to construct two different triangles, one at a time, in such a way that the following conditions are met.

• The angle formed at has the same measure in both triangles.
• The angle formed at has the same measure in both triangles.
Once the two triangles are drawn, find the side lengths and angle measures of each triangle. Is there any relationship between the triangles? Repeat the process a few times to see if the relationship remains true.
Discussion

## Angle-Side-Angle Congruence Theorem

The following statement could be seen in the previous applet. When two triangles have two pairs of corresponding congruent angles, and the included corresponding sides are congruent, the triangles are then congruent. That leads to the second criteria for triangle congruence.

If two angles and the included side of a triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.

Based on the diagram above, the theorem can be written as follows.

### Proof

Angle-Side-Angle Congruent Theorem

This proof will be developed based on the given diagram, but it is valid for any pair of triangles.

The goal of the proof is to find a rigid motion or sequence of rigid motions that maps one triangle onto the other. This can be done in several ways. One of the ways will be shown here.
1
Translate So That Two Corresponding Vertices Match
expand_more
Translate so that is mapped onto If this translation maps onto the proof is complete.
Since the image of the translation does not match at least one more transformation is needed.
2
Rotate So That Two Corresponding Sides Match
expand_more
Rotate counterclockwise about so that a pair of corresponding sides match. If the image of this transformation is the proof is complete. Note that this rotation maps onto Therefore, the rotation maps onto
As before, the image does not match Therefore, a third rigid motion is required.
3
Reflect So That All Corresponding Sides Match
expand_more
Reflect across Because reflections preserve angles, and are mapped onto and respectively. Then, the point of intersection of the original rays is mapped onto the point of intersection of the image rays
This time the image matches
Consequently, after a sequence of rigid motions can be mapped onto This means that and are congruent triangles.
Example

## Write Equations Based on Congruent Triangles

Consider the following diagram.

What is the value of

### Hint

Take note that is a common side for two triangles. Use the fact that if two triangles are congruent, their corresponding sides and angles are congruent.

### Solution

Notice that is a common side for triangles and
By the Reflexive Property of Congruence, is congruent to itself. Additionally, and are congruent, as are and
Consequently, and are congruent because of the Angle-Side-Angle (ASA) Congruence Theorem. Therefore, the corresponding sides and angles are congruent.
By definition, congruent angles have the same measure, and congruent segments have the same length. Therefore, the congruence statements on the right-hand side support the formation of the following three equations.
By solving Equation (I), the value of can be found.
Solve for
Next, solve Equation (III) to find the value of
Solve for
Then, the value of can be found by substituting into the Equation (II) and solving the resulting equation for
Solve for
Finally, the required sum can be calculated by substituting the values found for and
Explore

## Congruence of Triangles Given Three Pairs of Congruent Sides

At the beginning of the lesson, it was shown that the Angle-Angle-Angle is not a valid criterion for determining triangle congruence. Next, using the following applet, it will be investigated if the Side-Side-Side is a valid criterion. Use segments and to construct two different triangles. Construct the triangles one at a time.
Once the two triangles are drawn, find the angle measures of each triangle. Is there any relationship between the triangles? Repeat the process a couple of times to see if the relationship holds true.
Discussion

## Side-Side-Side Congruence Theorem

As seen in the previous exploration, the Side-Side-Side is a valid criterion for checking triangle congruence.

If the three sides of a triangle are congruent to the three sides of another triangle, then the triangles are congruent.

Based on the diagram above, the theorem can be written as follows.

### Proof

Side-Side-Side Congruence Theorem

This proof will be developed based on the given diagram, but it is valid for any pair of triangles.

The primary purpose of this proof is finding a rigid motion or sequence of rigid motions that maps one triangle onto the other. This can be done in several ways. One of them will be shown here.
1
Translate So That Two Corresponding Vertices Match
expand_more
Translate so that is mapped onto If this translation maps onto the proof is complete.
Since the image of the translation does not match at least one more transformation is needed.
2
Rotate So That Two Corresponding Sides Match
expand_more
Rotate counterclockwise about so that a pair of corresponding sides matches. If the image of this transformation is the proof is complete. Note that this rotation maps onto Consequently, is mapped onto
As before, the image does not match Therefore, a third rigid motion is required.
3
Reflect So That Two More Corresponding Sides Match
expand_more

The points and are on opposite sides of Now, consider Let denote the point of intersection between and

It can be noted that and By the Converse Perpendicular Bisector Theorem, is a perpendicular bisector of Points along the perpendicular bisector are equidistant from the endpoints of the segment, so

Finally, can be mapped onto by a reflection across by reflecting across Because reflections preserve angles, and are mapped onto and respectively.
This time the image matches
Consequently, the application of a sequence of rigid motions allows to be mapped onto This means that and are congruent triangles. The proof is complete.

Given three random segments, it is not always possible to construct a triangle. But, when possible, this triangle will be unique. This fact implies that the angle measures of that triangle are also unique.

Therefore, any other triangle with the same side lengths will also have the same angle measures. Consequently, the two triangles are congruent. Notice that, in contrast, having the same angle measures does not force the side lengths to be unique.
Example

## Using Triangle Congruence Conditions to Solve Problems

In the following diagram, is a rectangle, and are squares, and are isosceles triangles, is congruent to and is congruent to

If what is the value of

### Hint

Using the Segment Addition Postulate and the Side-Side-Side (SSS) Congruence Theorem, prove that is congruent to Then, find the measure of Use the fact that

### Solution

To find the value of notice that and add up
Since is a rectangle and is a square, and are right angles. Therefore, these angles have a measure of each. Also, it is given that Use this information to solve for
Solve for
An expression of was found in terms of Therefore, to find the value of the value of should first be known.

### Finding the Value of

If and can be proven to be congruent, that would provide the needed information to find the value of Therefore, focus on those two triangles.

#### Proving that

Notice that is common to both triangles. By using the Segment Addition Postulate, the following pair of equations can be written.
Since is congruent to these segments have the same length, that is, Simlarly, By substituting these expressions into Equation (I), a relation between and will be obtained.
Substitute values and simplify

This equation implies that and are congruent.

#### Proving that

Once more, the Segment Addition Postulate can be used to rewrite and
Because is isosceles, is congruent to Therefore, Keep in mind that it is given that and are congruent. That means These two expressions can be substituted into Equation (I).
Substitute values and simplify

Based on the equation just obtained, it can be concluded that and are congruent.

#### Proving that

Since is a rectangle, and are squares, and and are isosceles triangles, the following consequences can be drawn.

Given Consequence
is a rectangle
is a square
is a square
is an isosceles triangle
is an isosceles triangle

Next, organize the information in the right-hand column in a flow chart and use the Transitive Property of Congruence to prove that

#### Proving that

Previously, the following three congruence statements were obtained.
The Side-Side-Side (SSS) Congruence Theorem allows to conclude that is congruent to
Since corresponding parts of congruent triangles are congruent, it can be concluded that is congruent to Therefore,

### Finding the Value of

Finally, to find the value of substitute into the equation Then solve for
Solve for
Explore

## Congruence of Triangles Given Two Angles and a Nonincluded Side

Notice that the ASA criterion requires the congruent sides to be included between the two pairs of corresponding congruent angles. Using the following applet, investigate what happens when the congruent sides are not the included sides.

Use segment and the rays and to construct two different triangles, one at a time, in such a way that these conditions are met: