Core Connections Algebra 2, 2013
CC
Core Connections Algebra 2, 2013 View details
2. Section 2.2
Continue to next subchapter

Exercise 111 Page 93

Practice makes perfect
a Notice that the exponent of one of the factors is negative. When this is the case, the number can be moved to the denominator and the exponent will become positive.
a^(- m)* b^n=b^n/a^m ⇒ 5^(-2)*4^(12)=4^(12)/5^2 Using the Properties of Rational Exponents we can simplify this fraction. Let's start!
4^(12)/5^2

a^(12)=sqrt(a)

sqrt(4)/5^2
2/5^2
2/25
b To simplify the given expression, we will use the Properties of Rational Exponents. Remember that you can combine terms with the same base by adding or subtracting their powers. Let's do it!
3xy^2z^(-2)/(xy^(-1))z^2
3xy^2z^(-2)/x^(-1)y^(-1)z^2
3x^(1-(-1))y^(2-(-1))z^(-2-2)
3x^(1+1)y^(2+1)z^(-2-2)
3x^2y^3z^(-4)
3x^2y^3/z^4
c To simplify the given expression, we will use the Properties of Rational Exponents. For this exercise, we can start with distributing the powers to the terms inside the parentheses.
(3m^2)^3(2mn)^(-1)(8n^3)^(23)
3^3(m^2)^32^(-1)m^(-1)n^(-1)8^(23)(n^3)^(23)
3^3(m^2)^32^(-1)m^(-1)n^(-1)(2*2*2)^(23)(n^3)^(23)
3^3(m^2)^32^(-1)m^(-1)n^(-1)(2^3)^(23)(n^3)^(23)
3^3m^(2*3)2^(-1)m^(-1)n^(-1)2^(3* 23)n^(3* 23)
3^3m^62^(-1)m^(-1)n^(-1)2^2n^2
We can continue simplifying by combining the terms with the same base.
3^3m^62^(-1)m^(-1)n^(-1)2^2n^2
3^3m^(6+(-1))2^(-1+2)n^(-1+2)
3^3m^52^1n^1
3^3m^52n
27m^52n
54m^5n
d To simplify the given expression, we will use the Properties of Rational Exponents. For this exercise, we can start with replacing the power with the root.
(5x^2y^3z)^(13)
sqrt(5x^2y^3z)
sqrt(y^3)sqrt(5x^2z)
ysqrt(5x^2z)