Sign In
ll
Seattle/Kansas City & Function
+3000 points & f(x)=3000
Every month & x={ 1,2,..., 12} [2em]
Seattle/LA & Function
+1900 points & g(x)=1900
Every third month& x={ 3,6,9, 12} [2em]
Withdrawals & Function
-25 000 points & w(x)=-25000
Every 6 months & x={ 6, 12 }
With this information, we can create a table that shows how many frequent flier miles is added/subtracted each month and the cumulative, or total number of frequent flier miles Tino has in his account.
|c|c|c|c|
-4pt x -4pt & -2pt f(x)+g(x)+w(x) -2pt & -4pt Added -4pt & -2pt Total -2pt
-4pt 1 -4pt & -2pt f( 1)+g(1)+w(1) -2pt & -4pt3000 -4pt& -2pt 15 000 -2pt
-4pt 2 -4pt & -2pt f( 2)+g(2)+w(2) -2pt & -4pt3000 -4pt & -2pt 18 000 -2pt
-4pt 3 -4pt & -2pt f( 3)+g( 3)+w(1) -2pt & -4pt4900 -4pt & -2pt 22 900 -2pt
-4pt 4 -4pt & -2pt f( 4)+g(4)+w(4) -2pt & -4pt3000 -4pt& -2pt25 900 -2pt
-4pt 5 -3pt & -2pt f( 5)+g(5)+w(5) -2pt & -4pt3000 -4pt & -2pt 28 900 -2pt
-4pt 6 -3pt & -2pt f( 6)+g( 6)+w( 6) -2pt & -4pt - 20 100 -4pt& -2pt8800 -2pt
-4pt 7 -3pt & -2pt f( 7)+g(7)+w(7) -2pt & -4pt3000 -4pt & -2pt 11 800 -2pt
-4pt 8 -3pt & -2pt f( 8)+g(8)+w(8) -2pt & -4pt3000 -4pt & -2pt 14 800 -2pt
-4pt 9 -3pt & -2pt f( 9)+g( 9)+w(9) -2pt & -4pt4900 -4pt & -2pt19 700 -2pt
-4pt 10 -3pt & -2pt f( 10)+g(10)+w(10) -2pt & -4pt3000 -4pt & -2pt22 700 -2pt
-4pt 11 -3pt & -2pt f( 11)+g(11)+w(11) -2pt & -4pt 3000 -4pt & -2pt25 700 -2pt
-4pt 12 -3pt & -2pt f( 12)+g( 12)+w( 12) -2pt & -4pt - 20 100 -4pt& -2pt 5600 -2pt
Now we can draw the final graph.
5600-12 000=- 6400 miles He spent 6400 more miles than he earned. At the beginning of this year he had 5600 miles in his account. Therefore, If Tino continues this pattern, he would have a negative balance by the end of the year. Therefore, he will not be able to go on both of his usual holidays.