6. Recursively Defined Sequences
Sign In
The given rule means that, after the first term of the sequence, every term f(n) is the negative previous term f(n−1).
f(2)=-8 f(5)=8 f(10)=-8
n | f(n)=-f(n−1) | f(n) |
---|---|---|
1 | f(1)=8 | 8 |
2 | f(2)=-f(2−1) ⇕ f(2)=-f(1) |
f(2)=-8 ⇕ f(2)=-8 |
3 | f(3)=-f(3−1) ⇕ f(3)=-f(2) |
f(3)=-(-8) ⇕ f(3)=8 |
4 | f(4)=-f(4−1) ⇕ f(4)=-f(3) |
f(4)=-8 ⇕ f(4)=-8 |
5 | f(5)=-f(5−1) ⇕ f(5)=-f(4) |
f(5)=-(-8) ⇕ f(5)=8 |
6 | f(6)=-f(6−1) ⇕ f(6)=-f(5) |
f(6)=-8 ⇕ f(6)=-8 |
7 | f(7)=-f(7−1) ⇕ f(7)=-f(6) |
f(7)=-(-8) ⇕ f(7)=8 |
8 | f(8)=-f(8−1) ⇕ f(8)=-f(7) |
f(8)=-8 ⇕ f(8)=-8 |
9 | f(9)=-f(9−1) ⇕ f(9)=-f(8) |
f(9)=-(-8) ⇕ f(9)=8 |
10 | f(10)=-f(10−1) ⇕ f(10)=-f(9) |
f(10)=-8 ⇕ f(10)=-8 |
Therefore, f(2)=-8, f(5)=8 and f(10)=-8.