Big Ideas Math Integrated I, 2016
BI
Big Ideas Math Integrated I, 2016 View details
4. Proofs with Perpendicular Lines
Continue to next subchapter

Exercise 23 Page 525

Can you find any vertical angles

See solution.

Practice makes perfect
From the figure, we can identify a number of vertical angles. &∠ 1 and ∠ 5 &∠ 2 and 40^(∘) &∠ 3 and 30^(∘) According to the Vertical Angles Congruence Theorem, vertical angles are congruent. Therefore, we know that ∠ 1≅ ∠ 5, m∠ 2=40, and m∠ 3=30^(∘). Let's show this in our diagram. Note that ∠ 1 is a right angle and therefore measures 90^(∘).

To find the remaining m∠ 4, notice that 30^(∘), 40^(∘), and ∠ 4 in the figure below make up a right angle.

By adding these three angle measures and setting their sum equal to 90^(∘), we can solve for m∠ 4.
30^(∘)+40^(∘)+m∠ 4=90^(∘)
70^(∘)+m∠ 4=90^(∘)
70^(∘)+m∠ 4=90^(∘)
m∠ 4=20^(∘)
The last angle has a measure of 20^(∘).