Sign In
Start by looking for integer zeros. Integer zeros are factors of the constant term.
1, - 1/3, 2sqrt(3), and - 2sqrt(3)
We want to find all real zeros of the given polynomial function. To do so, we need to solve the equation f(x)=0. 3x^4-2x^3-37x^2+24x+12=0 The degree of f(x) is 4. Thus, by the Fundamental Theorem of Algebra, we know that f(x)=0 has exactly four roots. Let's find them.
By the Rational Root Theorem, we know that integer roots must be factors of the constant term. Since the constant term of f(x) is 12, the possible integer roots are ± 1, ± 2, ± 3, ± 4, ± 6, and ± 12. Let's check.
x | 3x^4-2x^3-37x^2+24x+12 | f(x)=3x^4-2x^3-37x^2+24x+12 |
---|---|---|
1 | 3( 1)^4-2( 1)^3-37( 1)^2+24( 1)+12 | 0 âś“ |
- 1 | 3( - 1)^4-2( - 1)^3-37( - 1)^2+24( - 1)+12 | - 44 * |
2 | 3( 2)^4-2( 2)^3-37( 2)^2+24( 2)+12 | - 56 * |
- 2 | 3( - 2)^4-2( - 2)^3-37( - 2)^2+24( - 2)+12 | - 120 * |
3 | 3( 3)^4-2( 3)^3-37( 3)^2+24( 3)+12 | - 60 * |
- 3 | 3( - 3)^4-2( - 3)^3-37( - 3)^2+24( - 3)+12 | - 96 * |
4 | 3( 4)^4-2( 4)^3-37( 4)^2+24( 4)+12 | 156 * |
- 4 | 3( - 4)^4-2( - 4)^3-37( - 4)^2+24( - 4)+12 | 220 * |
6 | 3( 6)^4-2( 6)^3-37( 6)^2+24( 6)+12 | 2280 * |
- 6 | 3( - 6)^4-2( - 6)^3-37( - 6)^2+24( - 6)+12 | 2856 * |
12 | 3( 12)^4-2( 12)^3-37( 12)^2+24( 12)+12 | 53 724 * |
- 12 | 3( - 12)^4-2( - 12)^3-37( - 12)^2+24( - 12)+12 | 60 060 * |
Bring down the first coefficient
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down
By the Rational Root Theorem, we know that rational roots have the form ± pq, where p is an integer factor of the constant term, and q is an integer factor of the leading coefficient.
x | 3x^4-2x^3-37x^2+24x+12 | f(x)=3x^4-2x^3-37x^2+24x+12 |
---|---|---|
1/3 | 3 ( 1/3 ) ^4-2 ( 1/3 ) ^3-37 ( 1/3 ) ^2+24 ( 1/3 ) +12 | 428/27 * |
- 1/3 | 3 ( - 1/3 ) ^4-2 ( - 1/3 ) ^3-37 ( - 1/3 ) ^2+24 ( - 1/3 ) +12 | 0 âś“ |
Bring down the first coefficient
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down
Substitute values
Calculate power
Multiply
(- a)(- b)=a* b
Add terms
Calculate root
.a /6./.b /6.=a/b