Sign In
Start by looking for integer zeros. Integer zeros are factors of the constant term.
3, - 4, and 2/3
To find all real solutions of 3x^3+x^2-38x+24=0, we need to find the zeros of the polynomial function. f(x)=3x^3+x^2-38x+24 The degree of f(x) is 3. Thus, by the Fundamental Theorem of Algebra, we know that f(x)=0 has exactly three roots. Let's find them.
x | 3x^3+x^2-38x+24 | f(x)=3x^3+x^2-38x+24 |
---|---|---|
1 | 3( 1)^3+( 1)^2-38( 1)+24 | - 10 * |
- 1 | 3( - 1)^3+( - 1)^2-38( - 1)+24 | 60 * |
2 | 3( 2)^3+( 2)^2-38( 2)+24 | - 24 * |
- 2 | 3( - 2)^3+( - 2)^2-38( - 2)+24 | 80 * |
3 | 3( 3)^3+( 3)^2-38( 3)+24 | 0 âś“ |
- 3 | 3( - 3)^3+( - 3)^2-38( - 3)+24 | 66 * |
4 | 3( 4)^3+( 4)^2-38( 4)+24 | 80 * |
- 4 | 3( - 4)^3+( - 4)^2-38( - 4)+24 | 0 âś“ |
6 | 3( 6)^3+( 6)^2-38( 6)+24 | 480 * |
- 6 | 3( - 6)^3+( - 6)^2-38( - 6)+24 | - 360 * |
8 | 3( 8)^3+( 8)^2-38( 8)+24 | 1320 * |
- 8 | 3( - 8)^3+( - 8)^2-38( - 8)+24 | - 1144 * |
12 | 3( 12)^3+( 12)^2-38( 12)+24 | 4896 * |
- 12 | 3( - 12)^3+( - 12)^2-38( - 12)+24 | - 4560 * |
24 | 3( 24)^3+( 24)^2-38( 24)+24 | 41 160 * |
- 24 | 3( - 24)^3+( - 24)^2-38( - 24)+24 | - 39 960 * |
Bring down the first coefficient
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down
Substitute values
x=- 10± 14/6 | |
---|---|
x_1=- 10+14/6 | x_2=- 10-14/6 |
x_1=4/6 | x_2=- 24/6 |
x_1=2/3 | x_2=- 4 |
We already knew that - 4 was a root, but now we have found our third root, 23. In conclusion, 3, - 4, and 23 are all real solutions of 3x^3+x^2-38x+24=0.