Sign In
Start by looking for integer zeros. Integer zeros are factors of the constant term.
3, - 4, and 3/2.
We want to find all real zeros of the given polynomial function. To do so, we need to solve the equation p(x)=0. 2x^3-x^2-27x+36=0 The degree of p(x) is 3. Thus, by the Fundamental Theorem of Algebra, we know that p(x)=0 has exactly three roots. Let's find them.
x | 2x^3-x^2-27x+36 | p(x)=2x^3-x^2-27x+36 |
---|---|---|
1 | 2( 1)^3-( 1)^2-27( 1)+36 | 10 * |
- 1 | 2( - 1)^3-( - 1)^2-27( - 1)+36 | 60 * |
2 | 2( 2)^3-( 2)^2-27( 2)+36 | - 6 * |
- 2 | 2( - 2)^3-( - 2)^2-27( - 2)+36 | 70 * |
3 | 2( 3)^3-( 3)^2-27( 3)+36 | 0 âś“ |
- 3 | 2( - 3)^3-( - 3)^2-27( - 3)+36 | 54 * |
4 | 2( 4)^3-( 4)^2-27( 4)+36 | 40 * |
- 4 | 2( - 4)^3-( - 4)^2-27( - 4)+36 | 0 âś“ |
6 | 2( 6)^3-( 6)^2-27( 6)+36 | 270 * |
- 6 | 2( - 6)^3-( - 6)^2-27( - 6)+36 | - 270 * |
9 | 2( 9)^3-( 9)^2-27( 9)+36 | 1170 * |
- 9 | 2( - 9)^3-( - 9)^2-27( - 9)+36 | - 1260 * |
12 | 2( 12)^3-( 12)^2-27( 12)+36 | 3024 * |
- 12 | 2( - 12)^3-( - 12)^2-27( - 12)+36 | - 3240 * |
18 | 2( 18)^3-( 18)^2-27( 18)+36 | 10 890 * |
- 18 | 2( - 18)^3-( - 18)^2-27( - 18)+36 | - 11 466 * |
36 | 2( 36)^3-( 36)^2-27( 36)+36 | 91 080 * |
- 36 | 2( - 36)^3-( - 36)^2-27( - 36)+36 | - 93 600 * |
Bring down the first coefficient
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down
Multiply the coefficient by the divisor
Add down
Substitute values
x=- 5± 11/4 | |
---|---|
x_1=- 5+11/4 | x_2=- 5-11/4 |
x_1=6/4 | x_2=- 16/4 |
x_1=3/2 | x_2=- 4 |
We already knew that - 4 was a root, but now we have found our third root, 32. In conclusion, 3, - 4, and 32 are all real zeros of p(x)=2x^3-x^2-27x+36.