Sign In
| 12 Theory slides |
| 10 Exercises - Grade E - A |
| Each lesson is meant to take 1-2 classroom sessions |
Here are a few recommended readings before getting started with this lesson.
Tiffaniqua, who works as a landscape designer, received a job to create a new design for an old city park. Since the park is quite huge, she divided its area into six rectangular sections. The first section contains a fountain (F) and is crossed by a river at two points — south (S) and north (N).
When she first came to analyze the park, she stood at the north-west corner of the first section, which she marked as point M. Then, she took notes of some measures of angles and distances.
Later when returning to her work space, Tiffaniqua used her notes to make additional calculations. What is the length of the river within the first section of the park? Round the answer to the first decimal place.
There are identities that allow calculating the values of trigonometric functions of the sum or difference of two angles.
To evaluate trigonometric functions of the sum of two angles, the following identities can be applied.
sin(x+y) &= sin x cos y + cos x sin y [0.8em] cos(x+y) &= cos x cos y - sin x sin y [0.8em] tan(x+y) &= tan x + tan y/1 - tan x tan y
There are also similar identities for the difference of two angles.
sin(x-y) &= sin x cos y - cos x sin y [0.8em] cos(x-y) &= cos x cos y + sin x sin y [0.8em] tan(x-y) &= tan x - tan y/1 + tan x tan y
Let △ AFD be a right triangle with hypotenuse 1 and an acute angle with measure x+y.
By definition, the sine of an angle is the ratio between the lengths of the opposite side and the hypotenuse. sin(x+y) = DF/1 ⇓ DF = sin(x+y) The idea now is to rewrite DF in terms of sin x, sin y, cos x, and cos y. To do it, draw a ray so that ∠ A is divided into two angles with measures x and y. Let C be a point on this ray such that △ ACD and △ ABC are right triangles.
AC= cos x
LHS * cos x=RHS* cos x
Rearrange equation
By the Third Angle Theorem, it is known that ∠ GAF ≅ ∠ GDC. Therefore, m∠ GDC = y.
Since the purpose is to rewrite DF, plot a point E on DF such that EC ∥ AB. This way a rectangle ECBF is formed. The opposite sides of a rectangle have the same length, so EF and CB are equal. Also, CE⊥ DF makes △ CED a right triangle.
Consequently, EF = cos x sin y and DE can be written in terms of sin x and cos y using the cosine ratio. cos y = DE/sin x ⇓ DE = sin x cos y Finally, by the Segment Addition Postulate, DF is equal to the sum of DE and EF. All these lengths have been rewritten in terms of the sine and cosine of x and y. DF = DE+ EF ⇓ sin(x+y) = sin x cos y + cos xsin y This concludes the proof of the first identity. The other identities can be proven using similar reasoning.
Consider the following process for calculating the exact value of sin 120^(∘).
Rewrite 120^(∘) as 90^(∘)+30^(∘)
sin(x+y) = sin x cos y + cos x sin y
Substitute values
1* a=a
Zero Property of Multiplication
Identity Property of Addition
When Tiffaniqua came home from work, she saw that her son Davontay and his friend Zain came up with a game. Davontay assigned numbers 1 through 6 to the trigonometric functions of sine, cosine, and tangent, while Zain assigned numbers 1 through 6 to six angle measures.
x= 60^(∘), y= 45^(∘)
Add terms
\ifnumequal{60}{0}{\sin\left(0^\circ\right)=0}{}\ifnumequal{60}{30}{\sin\left(30^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{60}{45}{\sin\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{60}{60}{\sin\left(60^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{60}{90}{\sin\left(90^\circ\right)=1}{}\ifnumequal{60}{120}{\sin\left(120^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{60}{135}{\sin\left(135^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{60}{150}{\sin\left(150^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{60}{180}{\sin\left(180^\circ\right)=0}{}\ifnumequal{60}{210}{\sin\left(210^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{60}{225}{\sin\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{60}{240}{\sin\left(240^\circ\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{60}{270}{\sin\left(270^\circ\right)=\text{-}1}{}\ifnumequal{60}{300}{\sin\left(300^\circ\right)=\text{-}\dfrac {\sqrt 3}2}{}\ifnumequal{60}{315}{\sin\left(315^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{60}{330}{\sin\left(330^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{60}{360}{\sin\left(360^\circ\right)=0}{}
\ifnumequal{45}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{45}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{45}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{45}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{45}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{45}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{45}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{45}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{45}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{45}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{45}{360}{\cos\left(360^\circ\right)=1}{}
\ifnumequal{60}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{60}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{60}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{60}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{60}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{60}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{60}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{60}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{60}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{60}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{60}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{60}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{60}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{60}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{60}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{60}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{60}{360}{\cos\left(360^\circ\right)=1}{}
\ifnumequal{45}{0}{\sin\left(0^\circ\right)=0}{}\ifnumequal{45}{30}{\sin\left(30^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{45}{45}{\sin\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{60}{\sin\left(60^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{90}{\sin\left(90^\circ\right)=1}{}\ifnumequal{45}{120}{\sin\left(120^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{135}{\sin\left(135^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{150}{\sin\left(150^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{45}{180}{\sin\left(180^\circ\right)=0}{}\ifnumequal{45}{210}{\sin\left(210^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{45}{225}{\sin\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{240}{\sin\left(240^\circ\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{45}{270}{\sin\left(270^\circ\right)=\text{-}1}{}\ifnumequal{45}{300}{\sin\left(300^\circ\right)=\text{-}\dfrac {\sqrt 3}2}{}\ifnumequal{45}{315}{\sin\left(315^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{330}{\sin\left(330^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{45}{360}{\sin\left(360^\circ\right)=0}{}
Multiply fractions
Add fractions
x= 240^(∘), y= 45^(∘)
Subtract term
tan (240^(∘))= sqrt(3)
450tan(0^(∘))=0 4530tan(30^(∘))=sqrt(3)/3 4545tan(45^(∘))=1 4560tan(60^(∘))=sqrt(3) 4590tan(90^(∘)) undefined 45120tan(120^(∘))=- sqrt(3) 45135tan(135^(∘))=- 1 45150tan(150^(∘))=- sqrt(3)/3 45180tan(180^(∘))=0 45270tan(270^(∘)) odef. 45360tan(360^(∘))=0
a * 1=a
a/b=a * (1-sqrt(3))/b * (1-sqrt(3))
(a+b)(a-b)=a^2-b^2
Multiply parentheses
Calculate power
Add and subtract terms
Put minus sign in front of fraction
Simplify quotient
Distribute - 1
Commutative Property of Addition
x= 120^(∘), y= 45^(∘)
Subtract term
\ifnumequal{120}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{120}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{120}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{120}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{120}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{120}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{120}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{120}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{120}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{120}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{120}{360}{\cos\left(360^\circ\right)=1}{}
\ifnumequal{45}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{45}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{45}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{45}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{45}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{45}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{45}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{45}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{45}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{45}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{45}{360}{\cos\left(360^\circ\right)=1}{}
\ifnumequal{120}{0}{\sin\left(0^\circ\right)=0}{}\ifnumequal{120}{30}{\sin\left(30^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{120}{45}{\sin\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{60}{\sin\left(60^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{90}{\sin\left(90^\circ\right)=1}{}\ifnumequal{120}{120}{\sin\left(120^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{135}{\sin\left(135^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{150}{\sin\left(150^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{120}{180}{\sin\left(180^\circ\right)=0}{}\ifnumequal{120}{210}{\sin\left(210^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{120}{225}{\sin\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{240}{\sin\left(240^\circ\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{120}{270}{\sin\left(270^\circ\right)=\text{-}1}{}\ifnumequal{120}{300}{\sin\left(300^\circ\right)=\text{-}\dfrac {\sqrt 3}2}{}\ifnumequal{120}{315}{\sin\left(315^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{330}{\sin\left(330^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{120}{360}{\sin\left(360^\circ\right)=0}{}
\ifnumequal{45}{0}{\sin\left(0^\circ\right)=0}{}\ifnumequal{45}{30}{\sin\left(30^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{45}{45}{\sin\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{60}{\sin\left(60^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{90}{\sin\left(90^\circ\right)=1}{}\ifnumequal{45}{120}{\sin\left(120^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{135}{\sin\left(135^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{150}{\sin\left(150^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{45}{180}{\sin\left(180^\circ\right)=0}{}\ifnumequal{45}{210}{\sin\left(210^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{45}{225}{\sin\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{240}{\sin\left(240^\circ\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{45}{270}{\sin\left(270^\circ\right)=\text{-}1}{}\ifnumequal{45}{300}{\sin\left(300^\circ\right)=\text{-}\dfrac {\sqrt 3}2}{}\ifnumequal{45}{315}{\sin\left(315^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{330}{\sin\left(330^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{45}{360}{\sin\left(360^\circ\right)=0}{}
Multiply fractions
Commutative Property of Addition
Subtract fractions
x= 30^(∘), y= 45^(∘)
Subtract term
300tan(0^(∘))=0 3030tan(30^(∘))=sqrt(3)/3 3045tan(45^(∘))=1 3060tan(60^(∘))=sqrt(3) 3090tan(90^(∘)) undefined 30120tan(120^(∘))=- sqrt(3) 30135tan(135^(∘))=- 1 30150tan(150^(∘))=- sqrt(3)/3 30180tan(180^(∘))=0 30270tan(270^(∘)) odef. 30360tan(360^(∘))=0
450tan(0^(∘))=0 4530tan(30^(∘))=sqrt(3)/3 4545tan(45^(∘))=1 4560tan(60^(∘))=sqrt(3) 4590tan(90^(∘)) undefined 45120tan(120^(∘))=- sqrt(3) 45135tan(135^(∘))=- 1 45150tan(150^(∘))=- sqrt(3)/3 45180tan(180^(∘))=0 45270tan(270^(∘)) odef. 45360tan(360^(∘))=0
a * 1=a
Rewrite 1 as 3/3
Add fractions
.a/b /c/d.=a/b*d/c
Multiply fractions
a/b=.a /3./.b /3.
a/b=a * (sqrt(3)-3)/b * (sqrt(3)-3)
(a+b)(a-b)=a^2-b^2
a* a=a^2
(a-b)^2=a^2-2ab+b^2
Calculate power
Add and subtract terms
Put minus sign in front of fraction
Simplify quotient
Distribute - 1
Commutative Property of Addition
In the game that Davontay and Zain created and played, Davontay solved everything correctly. Zain, on the other hand, made one mistake. This was on Zain's mind as they came home, so they decided to practice by evaluating more trigonometric functions.
Find the values of the given expressions along with Zain.
x= 20π/12, y= 3π/12
Add fractions
a/b=.a /4./.b /4.
a/b=.a /3./.b /3.
\ifnumequal{300}{0}{\sin\left(0\right)=0}{}\ifnumequal{300}{30}{\sin\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}}{}\ifnumequal{300}{45}{\sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{300}{60}{\sin\left(\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{300}{90}{\sin\left(\dfrac{\pi}{2}\right)=1}{}\ifnumequal{300}{120}{\sin\left(\dfrac{2\pi}{3}\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{300}{135}{\sin\left(\dfrac{3\pi}{4}\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{300}{150}{\sin\left(\dfrac{5\pi}{6}\right)=\dfrac{1}{2}}{}\ifnumequal{300}{180}{\sin\left(\pi\right)=0}{}\ifnumequal{300}{210}{\sin\left(\dfrac{7\pi}6\right)=\text{-} \dfrac 1 2}{}\ifnumequal{300}{225}{\sin\left(\dfrac{5\pi}{4}\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{300}{240}{\sin\left(\dfrac{4\pi}3\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{300}{270}{\sin\left(\dfrac{3\pi}{2}\right)=\text{-} 1}{}\ifnumequal{300}{300}{\sin\left(\dfrac{5\pi}3\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{300}{315}{\sin\left(\dfrac{7\pi}4\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{300}{330}{\sin\left(\dfrac{11\pi}6\right)=\text{-} \dfrac 1 2}{}\ifnumequal{300}{360}{\sin\left(2\pi\right)=0}{}
\ifnumequal{45}{0}{\cos\left(0\right)=1}{}\ifnumequal{45}{30}{\cos\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{45}{\cos\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{60}{\cos\left(\dfrac{\pi}{3}\right)=\dfrac{1}{2}}{}\ifnumequal{45}{90}{\cos\left(\dfrac{\pi}{2}\right)=0}{}\ifnumequal{45}{120}{\cos\left(\dfrac{2\pi}{3}\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{45}{135}{\cos\left(\dfrac{3\pi}{4}\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{150}{\cos\left(\dfrac{5\pi}{6}\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{180}{\cos\left(\pi\right)=\text{-} 1}{}\ifnumequal{45}{210}{\cos\left(\dfrac{7\pi}6\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{45}{225}{\cos\left(\dfrac{5\pi}{4}\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{240}{\cos\left(\dfrac{4\pi}3\right)=\text{-} \dfrac {1}2}{}\ifnumequal{45}{270}{\cos\left(\dfrac{3\pi}{2}\right)=0}{}\ifnumequal{45}{300}{\cos\left(\dfrac{5\pi}3\right)=\dfrac{1}2}{}\ifnumequal{45}{315}{\cos\left(\dfrac{7\pi}4\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{330}{\cos\left(\dfrac{11\pi}6\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{45}{360}{\cos\left(2\pi\right)=1}{}
\ifnumequal{300}{0}{\cos\left(0\right)=1}{}\ifnumequal{300}{30}{\cos\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{300}{45}{\cos\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{300}{60}{\cos\left(\dfrac{\pi}{3}\right)=\dfrac{1}{2}}{}\ifnumequal{300}{90}{\cos\left(\dfrac{\pi}{2}\right)=0}{}\ifnumequal{300}{120}{\cos\left(\dfrac{2\pi}{3}\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{300}{135}{\cos\left(\dfrac{3\pi}{4}\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{300}{150}{\cos\left(\dfrac{5\pi}{6}\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{300}{180}{\cos\left(\pi\right)=\text{-} 1}{}\ifnumequal{300}{210}{\cos\left(\dfrac{7\pi}6\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{300}{225}{\cos\left(\dfrac{5\pi}{4}\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{300}{240}{\cos\left(\dfrac{4\pi}3\right)=\text{-} \dfrac {1}2}{}\ifnumequal{300}{270}{\cos\left(\dfrac{3\pi}{2}\right)=0}{}\ifnumequal{300}{300}{\cos\left(\dfrac{5\pi}3\right)=\dfrac{1}2}{}\ifnumequal{300}{315}{\cos\left(\dfrac{7\pi}4\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{300}{330}{\cos\left(\dfrac{11\pi}6\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{300}{360}{\cos\left(2\pi\right)=1}{}
\ifnumequal{45}{0}{\sin\left(0\right)=0}{}\ifnumequal{45}{30}{\sin\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}}{}\ifnumequal{45}{45}{\sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{60}{\sin\left(\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{90}{\sin\left(\dfrac{\pi}{2}\right)=1}{}\ifnumequal{45}{120}{\sin\left(\dfrac{2\pi}{3}\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{135}{\sin\left(\dfrac{3\pi}{4}\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{150}{\sin\left(\dfrac{5\pi}{6}\right)=\dfrac{1}{2}}{}\ifnumequal{45}{180}{\sin\left(\pi\right)=0}{}\ifnumequal{45}{210}{\sin\left(\dfrac{7\pi}6\right)=\text{-} \dfrac 1 2}{}\ifnumequal{45}{225}{\sin\left(\dfrac{5\pi}{4}\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{240}{\sin\left(\dfrac{4\pi}3\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{45}{270}{\sin\left(\dfrac{3\pi}{2}\right)=\text{-} 1}{}\ifnumequal{45}{300}{\sin\left(\dfrac{5\pi}3\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{45}{315}{\sin\left(\dfrac{7\pi}4\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{330}{\sin\left(\dfrac{11\pi}6\right)=\text{-} \dfrac 1 2}{}\ifnumequal{45}{360}{\sin\left(2\pi\right)=0}{}
Multiply fractions
Commutative Property of Addition
Subtract fractions
x= 120^(∘), y= 45^(∘)
Add terms
\ifnumequal{120}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{120}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{120}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{120}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{120}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{120}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{120}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{120}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{120}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{120}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{120}{360}{\cos\left(360^\circ\right)=1}{}
\ifnumequal{45}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{45}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{45}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{45}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{45}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{45}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{45}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{45}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{45}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{45}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{45}{360}{\cos\left(360^\circ\right)=1}{}
\ifnumequal{120}{0}{\sin\left(0^\circ\right)=0}{}\ifnumequal{120}{30}{\sin\left(30^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{120}{45}{\sin\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{60}{\sin\left(60^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{90}{\sin\left(90^\circ\right)=1}{}\ifnumequal{120}{120}{\sin\left(120^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{135}{\sin\left(135^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{150}{\sin\left(150^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{120}{180}{\sin\left(180^\circ\right)=0}{}\ifnumequal{120}{210}{\sin\left(210^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{120}{225}{\sin\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{240}{\sin\left(240^\circ\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{120}{270}{\sin\left(270^\circ\right)=\text{-}1}{}\ifnumequal{120}{300}{\sin\left(300^\circ\right)=\text{-}\dfrac {\sqrt 3}2}{}\ifnumequal{120}{315}{\sin\left(315^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{330}{\sin\left(330^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{120}{360}{\sin\left(360^\circ\right)=0}{}
\ifnumequal{45}{0}{\sin\left(0^\circ\right)=0}{}\ifnumequal{45}{30}{\sin\left(30^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{45}{45}{\sin\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{60}{\sin\left(60^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{90}{\sin\left(90^\circ\right)=1}{}\ifnumequal{45}{120}{\sin\left(120^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{135}{\sin\left(135^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{150}{\sin\left(150^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{45}{180}{\sin\left(180^\circ\right)=0}{}\ifnumequal{45}{210}{\sin\left(210^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{45}{225}{\sin\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{240}{\sin\left(240^\circ\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{45}{270}{\sin\left(270^\circ\right)=\text{-}1}{}\ifnumequal{45}{300}{\sin\left(300^\circ\right)=\text{-}\dfrac {\sqrt 3}2}{}\ifnumequal{45}{315}{\sin\left(315^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{330}{\sin\left(330^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{45}{360}{\sin\left(360^\circ\right)=0}{}
Multiply fractions
Subtract fractions
Factor out - 1
Put minus sign in front of fraction
x= 225^(∘), y= 30^(∘)
Add terms
tan(225^(∘))=1
300tan(0^(∘))=0 3030tan(30^(∘))=sqrt(3)/3 3045tan(45^(∘))=1 3060tan(60^(∘))=sqrt(3) 3090tan(90^(∘)) undefined 30120tan(120^(∘))=- sqrt(3) 30135tan(135^(∘))=- 1 30150tan(150^(∘))=- sqrt(3)/3 30180tan(180^(∘))=0 30270tan(270^(∘)) odef. 30360tan(360^(∘))=0
Identity Property of Multiplication
Rewrite 1 as 3/3
Add and subtract fractions
.a/b /c/d.=a/b*d/c
Multiply fractions
Simplify quotient
a/b=a * (3+sqrt(3))/b * (3+sqrt(3))
(a-b)(a+b)=a^2-b^2
a^m*a^n=a^(m+n)
(a+b)^2=a^2+2ab+b^2
Calculate power
Add and subtract terms
a/b=.a /2./.b /2.
Find the trigonometric value of the given angle by using the Angle Sum and Difference Identities. When inputting the answer, write the radical with the greater radicand first.
Can cos(60^(∘)+θ) be rewritten into sin(30^(∘)-θ)? Use Cofunction Identities.
cos(α+β)=cos(α)cos(β)-sin(α)sin(β)
Rewrite 60^(∘) as 90^(∘)-30^(∘)
cos(90^(∘)-θ)=sin(θ)
sin(90^(∘)-θ)=cos(θ)
Later, while walking to the cafeteria, Zain and Davontay started jokingly imagining how cool it would be to meet an alien in space. Although they could not go to space themselves — they made weekend plans to build a board game — they came up with an idea to build a small rocket and send their representative Ben!
Use the Angle Difference Identity for sine to rewrite Davontay's expression as Zain's expression.
sin(α-β)=sin(α)cos(β)-cos(α)sin(β)
\ifnumequal{270}{0}{\sin\left(0\right)=0}{}\ifnumequal{270}{30}{\sin\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}}{}\ifnumequal{270}{45}{\sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{270}{60}{\sin\left(\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{270}{90}{\sin\left(\dfrac{\pi}{2}\right)=1}{}\ifnumequal{270}{120}{\sin\left(\dfrac{2\pi}{3}\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{270}{135}{\sin\left(\dfrac{3\pi}{4}\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{270}{150}{\sin\left(\dfrac{5\pi}{6}\right)=\dfrac{1}{2}}{}\ifnumequal{270}{180}{\sin\left(\pi\right)=0}{}\ifnumequal{270}{210}{\sin\left(\dfrac{7\pi}6\right)=\text{-} \dfrac 1 2}{}\ifnumequal{270}{225}{\sin\left(\dfrac{5\pi}{4}\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{270}{240}{\sin\left(\dfrac{4\pi}3\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{270}{270}{\sin\left(\dfrac{3\pi}{2}\right)=\text{-} 1}{}\ifnumequal{270}{300}{\sin\left(\dfrac{5\pi}3\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{270}{315}{\sin\left(\dfrac{7\pi}4\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{270}{330}{\sin\left(\dfrac{11\pi}6\right)=\text{-} \dfrac 1 2}{}\ifnumequal{270}{360}{\sin\left(2\pi\right)=0}{}
\ifnumequal{270}{0}{\cos\left(0\right)=1}{}\ifnumequal{270}{30}{\cos\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{270}{45}{\cos\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{270}{60}{\cos\left(\dfrac{\pi}{3}\right)=\dfrac{1}{2}}{}\ifnumequal{270}{90}{\cos\left(\dfrac{\pi}{2}\right)=0}{}\ifnumequal{270}{120}{\cos\left(\dfrac{2\pi}{3}\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{270}{135}{\cos\left(\dfrac{3\pi}{4}\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{270}{150}{\cos\left(\dfrac{5\pi}{6}\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{270}{180}{\cos\left(\pi\right)=\text{-} 1}{}\ifnumequal{270}{210}{\cos\left(\dfrac{7\pi}6\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{270}{225}{\cos\left(\dfrac{5\pi}{4}\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{270}{240}{\cos\left(\dfrac{4\pi}3\right)=\text{-} \dfrac {1}2}{}\ifnumequal{270}{270}{\cos\left(\dfrac{3\pi}{2}\right)=0}{}\ifnumequal{270}{300}{\cos\left(\dfrac{5\pi}3\right)=\dfrac{1}2}{}\ifnumequal{270}{315}{\cos\left(\dfrac{7\pi}4\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{270}{330}{\cos\left(\dfrac{11\pi}6\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{270}{360}{\cos\left(2\pi\right)=1}{}
Multiplication Property of -1
Zero Property of Multiplication
Zain's friend Davontay recently took up guitar lessons. One day, Zain went over to his house to hang out and saw Davontay practicing. Zain told Davontay that they just learned how every time a taut string is pulled and released, a wave is created. Davontay wants to know more!
standing waverepresented by the following formula. y = Acos ( 2π t/3 - 2π x/5 ) + Acos ( 2π t/3 + 2π x/5 ) Here, y is the displacement of each point on the string, which depends on the time t and the point's position x. How can this formula be simplified for t=1?
Substitute 1 for t and apply the Angle Sum and Difference Identities for cosine.
t= 1
a * 1=a
Factor out A
cos(α-β)=cos(α)cos(β)+sin(α)sin(β)
cos(α+β)=cos(α)cos(β)-sin(α)sin(β)
Add and subtract terms
\ifnumequal{120}{0}{\cos\left(0\right)=1}{}\ifnumequal{120}{30}{\cos\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{45}{\cos\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{60}{\cos\left(\dfrac{\pi}{3}\right)=\dfrac{1}{2}}{}\ifnumequal{120}{90}{\cos\left(\dfrac{\pi}{2}\right)=0}{}\ifnumequal{120}{120}{\cos\left(\dfrac{2\pi}{3}\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{120}{135}{\cos\left(\dfrac{3\pi}{4}\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{150}{\cos\left(\dfrac{5\pi}{6}\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{180}{\cos\left(\pi\right)=\text{-} 1}{}\ifnumequal{120}{210}{\cos\left(\dfrac{7\pi}6\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{120}{225}{\cos\left(\dfrac{5\pi}{4}\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{240}{\cos\left(\dfrac{4\pi}3\right)=\text{-} \dfrac {1}2}{}\ifnumequal{120}{270}{\cos\left(\dfrac{3\pi}{2}\right)=0}{}\ifnumequal{120}{300}{\cos\left(\dfrac{5\pi}3\right)=\dfrac{1}2}{}\ifnumequal{120}{315}{\cos\left(\dfrac{7\pi}4\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{330}{\cos\left(\dfrac{11\pi}6\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{120}{360}{\cos\left(2\pi\right)=1}{}
a(- b)=- a * b
Consider the given expression involving trigonometric functions. Instead of calculating the value of each trigonometric function, first simplify the expression by applying the Angle Sum and Difference Identities.
cos(α+β)=cos(α)cos(β)-sin(α)sin(β)
\ifnumequal{60}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{60}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{60}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{60}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{60}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{60}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{60}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{60}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{60}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{60}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{60}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{60}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{60}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{60}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{60}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{60}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{60}{360}{\cos\left(360^\circ\right)=1}{}
\ifnumequal{60}{0}{\sin\left(0^\circ\right)=0}{}\ifnumequal{60}{30}{\sin\left(30^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{60}{45}{\sin\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{60}{60}{\sin\left(60^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{60}{90}{\sin\left(90^\circ\right)=1}{}\ifnumequal{60}{120}{\sin\left(120^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{60}{135}{\sin\left(135^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{60}{150}{\sin\left(150^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{60}{180}{\sin\left(180^\circ\right)=0}{}\ifnumequal{60}{210}{\sin\left(210^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{60}{225}{\sin\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{60}{240}{\sin\left(240^\circ\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{60}{270}{\sin\left(270^\circ\right)=\text{-}1}{}\ifnumequal{60}{300}{\sin\left(300^\circ\right)=\text{-}\dfrac {\sqrt 3}2}{}\ifnumequal{60}{315}{\sin\left(315^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{60}{330}{\sin\left(330^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{60}{360}{\sin\left(360^\circ\right)=0}{}
Factor out 1/2
Commutative Property of Multiplication
sin(α-β)=sin(α)cos(β)-cos(α)sin(β)
\ifnumequal{120}{0}{\sin\left(0^\circ\right)=0}{}\ifnumequal{120}{30}{\sin\left(30^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{120}{45}{\sin\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{60}{\sin\left(60^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{90}{\sin\left(90^\circ\right)=1}{}\ifnumequal{120}{120}{\sin\left(120^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{135}{\sin\left(135^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{150}{\sin\left(150^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{120}{180}{\sin\left(180^\circ\right)=0}{}\ifnumequal{120}{210}{\sin\left(210^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{120}{225}{\sin\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{240}{\sin\left(240^\circ\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{120}{270}{\sin\left(270^\circ\right)=\text{-}1}{}\ifnumequal{120}{300}{\sin\left(300^\circ\right)=\text{-}\dfrac {\sqrt 3}2}{}\ifnumequal{120}{315}{\sin\left(315^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{330}{\sin\left(330^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{120}{360}{\sin\left(360^\circ\right)=0}{}
\ifnumequal{120}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{120}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{120}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{120}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{120}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{120}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{120}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{120}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{120}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{120}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{120}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{120}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{120}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{120}{360}{\cos\left(360^\circ\right)=1}{}
a-(- b)=a+b
Factor out 1/2
In the challenge at the beginning, it was said that a landscape designer Tiffaniqua got received a job to create a new design for an old city park. She divided its area into six rectangular sections. The first section contains a fountain (F) and is crossed by a river at two points — south (S) and north (N).
When she first came to analyze the park, she stood at the north-west corner of the first section, which she marked as point M. She then took notes of some measures of angles and distances.
Start by calculating MF by using the the ratio of the sine of 30^(∘). Find the measure of the angle the river forms with the right side of the section and then use the Angle Difference Identity.
To calculate the lengths of the river in the first section, NS should be found. For the purpose of the following calculations, let R be the right upper corner of the rectangular section.
Since the section is a rectangle, ∠ NRS is a right angle, which means that △ NRS is a right triangle. Additionally, the lengths of the opposite sides of a rectangle are equal, so MF=RS. To find the length of these sides, consider △ MSF.
MS= 40
LHS * 40=RHS* 40
Rearrange equation
\ifnumequal{30}{0}{\sin\left(0^\circ\right)=0}{}\ifnumequal{30}{30}{\sin\left(30^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{30}{45}{\sin\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{60}{\sin\left(60^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{90}{\sin\left(90^\circ\right)=1}{}\ifnumequal{30}{120}{\sin\left(120^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{135}{\sin\left(135^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{150}{\sin\left(150^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{30}{180}{\sin\left(180^\circ\right)=0}{}\ifnumequal{30}{210}{\sin\left(210^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{30}{225}{\sin\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{240}{\sin\left(240^\circ\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{30}{270}{\sin\left(270^\circ\right)=\text{-}1}{}\ifnumequal{30}{300}{\sin\left(300^\circ\right)=\text{-}\dfrac {\sqrt 3}2}{}\ifnumequal{30}{315}{\sin\left(315^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{330}{\sin\left(330^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{30}{360}{\sin\left(360^\circ\right)=0}{}
Multiply
Note that three angles at the vertex S are complementary, which means that the sum of their measures is 90^(∘). 30^(∘)+45^(∘)+m∠ NSR=90^(∘) ⇓ m∠ NSR=15^(∘) Now it is known that one of the acute angles in △ NSR has measure of 15^(∘) and its adjacent side is 20 meters long.
x= 45^(∘), y= 30
Subtract term
\ifnumequal{45}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{45}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{45}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{45}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{45}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{45}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{45}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{45}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{45}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{45}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{45}{360}{\cos\left(360^\circ\right)=1}{}
\ifnumequal{30}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{30}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{30}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{30}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{30}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{30}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{30}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{30}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{30}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{30}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{30}{360}{\cos\left(360^\circ\right)=1}{}
\ifnumequal{45}{0}{\sin\left(0^\circ\right)=0}{}\ifnumequal{45}{30}{\sin\left(30^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{45}{45}{\sin\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{60}{\sin\left(60^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{90}{\sin\left(90^\circ\right)=1}{}\ifnumequal{45}{120}{\sin\left(120^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{45}{135}{\sin\left(135^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{45}{150}{\sin\left(150^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{45}{180}{\sin\left(180^\circ\right)=0}{}\ifnumequal{45}{210}{\sin\left(210^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{45}{225}{\sin\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{240}{\sin\left(240^\circ\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{45}{270}{\sin\left(270^\circ\right)=\text{-}1}{}\ifnumequal{45}{300}{\sin\left(300^\circ\right)=\text{-}\dfrac {\sqrt 3}2}{}\ifnumequal{45}{315}{\sin\left(315^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{45}{330}{\sin\left(330^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{45}{360}{\sin\left(360^\circ\right)=0}{}
\ifnumequal{30}{0}{\sin\left(0^\circ\right)=0}{}\ifnumequal{30}{30}{\sin\left(30^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{30}{45}{\sin\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{60}{\sin\left(60^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{90}{\sin\left(90^\circ\right)=1}{}\ifnumequal{30}{120}{\sin\left(120^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{135}{\sin\left(135^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{150}{\sin\left(150^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{30}{180}{\sin\left(180^\circ\right)=0}{}\ifnumequal{30}{210}{\sin\left(210^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{30}{225}{\sin\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{240}{\sin\left(240^\circ\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{30}{270}{\sin\left(270^\circ\right)=\text{-}1}{}\ifnumequal{30}{300}{\sin\left(300^\circ\right)=\text{-}\dfrac {\sqrt 3}2}{}\ifnumequal{30}{315}{\sin\left(315^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{330}{\sin\left(330^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{30}{360}{\sin\left(360^\circ\right)=0}{}
Multiply fractions
Add fractions
LHS * NS=RHS* NS
.LHS /cos 15^(∘).=.RHS /cos 15^(∘).
cos 15^(∘)= sqrt(6)+sqrt(2)/4
a/b/c= a * c/b
Multiply
Use a calculator
Round to 1 decimal place(s)
The cosine value of a and the sine value of b are known. cos a= 3/5, & where 0
To find the value of sin (a-b), we will use the Angle Difference Identity for sine. sin (a-b)=sin acos b -cos asin b We need to find the values of sin a and cos b because we already know the values of cos a and sin b. cos a = 35 and sin b = - 79 To find the values of sin a and cos b, we can use these values.
Let's start by finding sin a. To do so, we will use one of the Pythagorean Identities. sin^2 a + cos^2 a =1 Let's substitute 35 for cos a and solve the obtained equation for sin a.
Let's now determine the sign of sin a. We are told that a is greater than 0 and less than π2. Therefore, if we draw angle a in standard position, its terminal side will be located in the first quadrant.
The angle a is in Quadrant I where sine is positive. Therefore, we can conclude that sin a= 35.
Let's now find cos b. We will substitute the given value sin b= - 79 into the same identity.
Let's now determine the sign of cos b. We are given that b is greater than 3π2 and less than 2π. Therefore, its terminal side is located in the fourth quadrant.
In the fourth quadrant cosine is positive. Therefore, we have that cos b= 4sqrt(2)9.
Now we have all the information we need to calculate sin (a-b).
To find the value of cos (a+b), we will start by recalling the Angle Sum Identity for cosine.
cos (a+b)=cos acos b -sin asin b
As we can see, we need to use the values of cos a, cos b, sin a, and sin b, which we already know by Part A.
a | b | |
---|---|---|
sin | 4/5 | 4 sqrt(2)/9 |
cos | 3/5 | - 7/9 |
Let's use these values to calculate cos (a+b).
We are asked to find the value of tan (a-b). Let's start by recalling the Angle Difference Identity for a tangent function.
tan (a-b)=tan a - tan b/1+tan a tan b
We need to know the values of tan a, and tan b. To do it, recall the Tangent Identity.
tan (θ)=sin θ/cos θ
Therefore, to find tan a and tan b, we need to know sin a, cos a, sin b and cos b. We are given that cos a= 35 and sin b= - 79. In Part A, we also found that sin a= 45 and cos b= 4sqrt(2)9. With this information, we can find the values of tan a and tan b.
tan a=sin a/cos a | tan b=sin b/cos b | |
---|---|---|
Substitute | tan a=45/35 | tan b=- 79/4sqrt(2)9 |
Simplify | tan a=4/5* 5/3 | tan b=- 7/9* 9/4sqrt(2) |
Evaluate | tan a=4/3 | tan b=- 7/4sqrt(2) |
Now we have all the information we need to calculate tan (a-b).
We obtained a fraction that has a radical in its denominator. Let's rationalize it by multiplying the numerator and denominator by the denominator's conjugate 12sqrt(2)+28.
The monthly high temperatures in Phoenix, Arizona, can be modeled by y_1 and the monthly low temperatures in Phoenix can be modeled by y_2. y_1=32.1sin( π6x-2.12)+53.47 [0.8em] y_2=29.3sin( π6x-2.26)+34.73 In these equations, x represents the months starting from January and the argument of the sine is given in radians.
Write a function that represents the monthly average temperatures in Phoenix. Round all the coefficients to one decimal place.To find the function for the monthly average temperature in Phoenix, we will add the functions for the monthly high and monthly low temperatures and divide the sum by 2. Average=High+Low/2 We are given two equations modeling the monthly high and low temperatures in Phoenix, Arizona. High: & y_1=32.1sin( π6x-2.12)+53.47 [0.8em] Low: & y_2=29.3sin( π6x-2.26)+34.73 As we can see, the sine functions have two different arguments. To be able to add the functions, we first need to rewrite the sines. To do so, let's use the Angle Difference Identity for sine. sin(x-y)=sin xcos y-cos xsin y We can start by rewriting the first function y_1. Note that the argument of sine is given in radians. We will keep this in mind when finding the values of sine and cosine using a calculator.
Similarly, we can use the identity to simplify the second function y_2.
Finally, let's use these rewritten functions to find the function for the monthly average temperature.
The expression we have obtained is the function we wanted to find. y_(average) = - 17.7 sin ( π6x) - 25 cos( π6x) + 44.1
When using a wireless internet connection, sometimes the signal can be temporarily lost. This happens because waves that pass through the same place at the same moment can combine to have a greater or smaller amplitude than either of the original waves causing interference.
We are given two functions modeling different signals. First signal: & y=18sin(4θ+45^(∘)) Second signal: & y=18sin(4θ+225^(∘)) We want to find the sum of these two functions. Before we do so, let's rewrite each of them by using the appropriate Sum Identity. For these functions, we need to use the Sum Identity for sine. sin(A+B)=sin Acos B + cos Asin B Let's simplify the first function.
Let's now use the same identity to simplify the second function.
Now, after we have simplified both functions, we can add them.
The sum of the given functions is the function y=0. This means that when two signal waves combined, they created a horizontal line, causing interference and signal loss.
We want to check whether the given equation is a trigonometric identity. sin (A-B)=tan A - tan B/sec A sec B We will start on the right-hand side and use the Tangent Identity, Reciprocal Identities, and Angle Sum and Difference Identities to see if we can obtain the expression on the left-hand side. Let's start by recalling one of the Tangent Identities. tan θ = sin θ/cos θ, cos θ ≠ 0 Now, we can substitute sin Acos A for tan A and sin Bcos B for tan B in our expression on the right-hand side.
Next, let's recall one of the Reciprocal Identities that involves secant. sec θ =1/cos θ, cos θ ≠ 0 We can substitute 1cos A for sec A and 1cos B for sec B into our expression. Then we will simplify it.
Finally, let's recall the Angle Sum and Difference Identities and see if we can use any of them.
Sum Identities | sin(x+y) = sin x cos y + cos x sin y |
---|---|
cos(x+y) = cos x cos y - sin x sin y | |
tan(x+y) = tan x + tan y/1 - tan x tan y | |
Difference Identities | sin(x-y) = sin x cos y - cos x sin y |
cos(x-y) = cos x cos y + sin x sin y | |
tan(x-y) = tan x - tan y/1 + tan x tan y |
As we can see, our expression matches the Angle Difference Identity for sine. Therefore, we can substitute sin (A+B) for sin A cos B+cos A sin B into our expression.
We started on the right-hand side of the identity and, after applying different identities, obtained the expression on the left-hand side. Therefore, the given equation is an identity.