You must have JavaScript enabled to use this site.
Expand menu
menu_open
Minimize
Start chapters
Home
History
history
History
expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics
equalizer
Progress
expand_more
Student
navigate_next
Teacher
navigate_next
filter_list
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
Choose book
search
cancel
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}%
Sign in to view progress
{{ printedBook.courseTrack.name }}
{{ printedBook.name }}
Get free trial
search
Use offline
Tools
apps
Login
account_circle
menu_open
Proving Polynomial Identities
Choose Course
Algebra 2
Polynomial Functions
Proving Polynomial Identities
expand_more
close
Proving Polynomial Identities 1.13 - Solution
arrow_back
Return to Proving Polynomial Identities
a
Here is a parentheses which has been raised by
2
.
We can expand it, using the
square of a binomial
.
3
(
x
+
5
)
2
−
7
5
ExpandPosPerfectSquare
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
3
(
x
2
+
2
⋅
x
⋅
5
+
5
2
)
−
7
5
Simplify
Simplify power and product
3
(
x
2
+
1
0
x
+
2
5
)
−
7
5
Distr
Distribute
3
3
⋅
x
2
+
3
⋅
1
0
x
+
3
⋅
2
5
−
7
5
Multiply
Multiply
3
x
2
+
3
0
x
+
7
5
−
7
5
SubTerm
Subtract term
3
x
2
+
3
0
x
b
Looking at the first term, we can use the
difference of squares
. First, let us rearrange the order of the parentheses.
(
7
−
x
)
(
x
+
7
)
+
4
9
CommutativePropMult
Commutative Property of Multiplication
(
7
+
x
)
(
7
−
x
)
+
4
9
ExpandDiffSquares
(
a
+
b
)
(
a
−
b
)
=
a
2
−
b
2
7
2
−
x
2
+
4
9
Simplify
CalcPow
Calculate power
4
9
−
x
2
+
4
9
AddTerms
Add terms
9
8
−
x
2
c
Now we use both the difference of squares and the squared binomials.
(
x
−
4
)
(
x
+
4
)
−
(
x
−
4
)
2
ExpandDiffSquares
(
a
+
b
)
(
a
−
b
)
=
a
2
−
b
2
x
2
−
4
2
−
(
x
−
4
)
2
Simplify
CalcPow
Calculate power
x
2
−
1
6
−
(
x
−
4
)
2
ExpandNegPerfectSquare
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
x
2
−
1
6
−
(
x
2
−
2
⋅
x
⋅
4
+
4
2
)
Simplify power and product
x
2
−
1
6
−
(
x
2
−
8
x
+
1
6
)
RemoveParSigns
Remove parentheses and change signs
x
2
−
1
6
−
x
2
+
8
x
−
1
6
CommutativePropAdd
Commutative Property of Addition
x
2
−
x
2
+
8
x
−
1
6
−
1
6
SimpTerms
Simplify terms
8
x
−
3
2