You must have JavaScript enabled to use this site.
mathleaks.com
mathleaks.com
Start chapters
home
Start
History
history
History
expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics
equalizer
Progress
expand_more
Student
navigate_next
Teacher
navigate_next
Expand menu
menu_open
Minimize
filter_list
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
Choose book
search
cancel
menu_open
home
{{ courseTrack.displayTitle }}
{{ statistics.percent }}%
Sign in to view progress
{{ printedBook.courseTrack.name }}
{{ printedBook.name }}
Get free trial
search
Use offline
Tools
apps
Login
account_circle
menu_open
Proving Polynomial Identities
Choose Course
Algebra 2
Polynomial Functions
Proving Polynomial Identities
expand_more
close
Proving Polynomial Identities 1.12 - Solution
arrow_back
Return to Proving Polynomial Identities
To
factor
the given
expression
, we will apply the
difference of cubes
.
a
3
−
b
3
⇔
(
a
−
b
)
(
a
2
+
a
b
+
b
2
)
First we need to rewrite
3
4
3
as a cube. Dividing
3
4
3
gives
4
9
and since
4
9
=
7
2
we can write
3
4
3
=
7
3
.
g
3
−
3
4
3
WritePow
Write as a power
g
3
−
7
3
a
3
−
b
3
=
(
a
−
b
)
(
a
2
+
a
b
+
b
2
)
(
g
−
7
)
(
g
2
+
g
⋅
7
+
7
2
)
Multiply
Multiply
(
g
−
7
)
(
g
2
+
7
g
+
7
2
)
CalcPow
Calculate power
(
g
−
7
)
(
g
2
+
7
g
+
4
9
)