1. Geometric Mean
Sign In
Find the lengths of the sides of each triangle.
Graph:
Verification: See solution.
Let's use the given coordinates to draw the original figure and its dilated image.
Side | Vertices | Distance Formula | Simplified | |
---|---|---|---|---|
First Pair of Sides | AC | (- 3,1), ( 3,- 2) | sqrt(( 3-(- 3))^2+( - 2-1)^2) | sqrt(45) |
DF | ( - 1,1), (1,0) | sqrt((1-( - 1))^2+( - 1)^2) | sqrt(5) | |
Second Pair of Sides | AB | (- 3,1), ( 9,7) | sqrt(( 9-(-3))^2+( 7-1)^2) | sqrt(180) |
DE | ( - 1,1), ( 3,3) | sqrt(( 3-( -1))^2+( 3- 1)^2) | sqrt(20) | |
Third Pair of Sides | CB | ( 3,- 2), ( 9,7) | sqrt(( 9- 3)^2+( 7-( - 2))^2) | sqrt(117) |
FE | (1,0), ( 3,3) | sqrt(( 3-1)^2+( 3- )^2) | sqrt(13) |
Now, we can find the ratios between the corresponding sides. AC/DF=sqrt(45)/sqrt(5) = 3 [1.2em] AB/DE=sqrt(180)/sqrt(20) = 3 [1.2em] CB/FE=sqrt(117)/sqrt(13) = 3 We can tell that these ratios are equivalent. Therefore, the corresponding side lengths of â–ł ABC and â–ł DEF are proportional. By the Side-Side-Side Similarity Theorem, we can conclude that â–ł ABC is similar to â–ł DEF. â–ł ABC ~ â–ł DEF Therefore, the dilation is a similarity transformation.