{{ tocSubheader }}
| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
If DEAB=EFBC=FDCA, then △ABC∼△DEF.
Consider two triangles △ABC and △DEF, whose corresponding sides are proportional.
These triangles can be proven to be similar by identifying a similarity transformation that maps one triangle onto the other. First, △DEF can be dilated with the scale factor k=DEAB about D, forming the new triangle △DE′F′.
The combination of this rigid motion and the dilation performed earlier forms a similarity transformation that maps △DEF onto △ABC.
Therefore, it can be concluded that △ABC and △DEF are similar triangles.
△ABC∼△DEF
The proof is now complete.