Sign In
Substitute W (6,2) & X (3,7)
Sides | Points | Substitution | Calculation |
---|---|---|---|
WX | W (6,2) & X (3,7) | WX = sqrt(( 3- 6)^2+( 7- 2)^2) | WX = sqrt(34) ≈ 5.8 |
XY | X (3,7) & Y (- 1,4) | XY = sqrt(( - 1- 3)^2+( 4- 7)^2) | XY = sqrt(25) = 5 |
YZ | Y (- 1,4) & Z (4,- 2) | YZ = sqrt(( 4-( - 1))^2+( - 2- 4)^2) | YZ = sqrt(61) ≈ 7.8 |
ZW | Z (4,- 2) & W (6,2) | ZW = sqrt(( 6- 4)^2+( 2-( - 2))^2) | ZW = sqrt(20) ≈ 4.5 |
The sum of these lengths is the perimeter P of polygon WXYZ. P & = WX + XY + YZ + ZW & = 5.8+ 5 + 7.8+ 4.5 & = 23.1 The perimeter of WXYZ is 23.1 units.
lcl (x,y) & → & (0.5x, 0.5y) [0.6em] [-0.6em] W(6,2) & → & W'(3,1) [0.5em] X(3,7) & → & X'(1.5,3.5) [0.5em] Y(- 1,4) & → & Y'(- 0.5,2) [0.5em] Z(4,- 2) & → & Z'(2,- 1) Now we will plot the points and connect them. The result is the dilated image.
Substitute W' (3,1) & X' (1.5,3.5)
Sides | Points | Substitution | Calculation |
---|---|---|---|
W'X' | W' (3,1) & X' (1.5,3.5) | W'X' = sqrt(( 1.5- 3)^2+( 3.5- 1)^2) | W'X' = sqrt(8.5) ≈ 2.9 |
X'Y' | X' (1.5,3.5) & Y' (- 0.5,2) | X'Y' = sqrt(( - 0.5- 1.5)^2+( 2- 3.5)^2) | X'Y' = sqrt(6.25) = 2.5 |
Y'Z' | Y' (- 0.5,2) & Z' (2, - 1) | Y'Z' = sqrt(( 2-( - 0.5))^2+( -1- 2)^2) | Y'Z'= sqrt(15.25) ≈ 3.9 |
Z'W' | Z' (2,- 1) & W' (3,1) | Z'W' = sqrt(( 3- 2)^2+( 1-( - 1))^2) | Z'W' = sqrt(5) ≈ 2.2 |
The perimeter P_d of the dilated image is 11.6 units. P_d & = 2.9+ 2.5 + 3.9+ 2.2 & = 11.5 Now let's calculate the ratio between the perimeter P_d of the dilated image and the perimeter P of WXYZ. P_d/P &= 11.5/23.1 &≈ 0.5 See that the result is about half the perimeter of the original image. The approximation is a result of rounding the values that were used to calculate the perimeters.