2. Section 4.2
Sign In
Make a table of values and connect the points with a smooth curve.
Table:
x | -4 | -3 | -2 | -1 | 0 | 1 | 2 |
---|---|---|---|---|---|---|---|
y | 5 | 0 | -3 | -4 | -3 | 0 | 5 |
Graph:
Roots: (-3,0) and (1,0)
x= -4
Calculate power and product
Subtract terms
x | x^2+2x-3 | y = x^2+2x-3 |
---|---|---|
-4 | ( -4)^2+2( -4)-3 | 5 |
-3 | ( -3)^2+2( -3)-3 | 0 |
-2 | ( -2)^2+2( -2)-3 | -3 |
-1 | ( -1)^2+2( -1)-3 | -4 |
0 | 0^2+2( 0)-3 | -3 |
1 | 1^2+2( 1)-3 | 0 |
2 | 2^2+2( 2)-3 | 5 |
Let's complete the table using the y-values we found.
x | -4 | -3 | -2 | -1 | 0 | 1 | 2 |
---|---|---|---|---|---|---|---|
y | 5 | 0 | -3 | -4 | -3 | 0 | 5 |
Notice that we found two roots, or x-intercepts, in our table — the points (-3,0) and (1,0). We know these are the roots of the equation because the y-values are 0, so the graph crosses the x-axis at these points. Now let's plot the points from the table and connect them with a smooth curve.