Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

Completing the Square

Completing the Square 1.4 - Solution

arrow_back Return to Completing the Square
We want to complete the square for the given expression. To do so, we will first identify b.b. In a quadratic trinomial, bb is the linear coefficient, which is the number that is multiplied by the x-x\text{-}variable. x2+2x+c\begin{gathered} x^2+2x+c \end{gathered} Now, we will calculate (b2)2.\left(\frac{b}{2}\right)^2. Since we have that b=2,b=2, we can calculate the value of (b2)2\left(\frac{b}{2}\right)^2 by substituting 22 for b.b.
(b2)2\left(\dfrac{b}{2}\right)^2
(22)2\left(\dfrac{{\color{#0000FF}{2}}}{2}\right)^2
(1)2(1)^2
11
The number that completes the square is c=1.c=1. x2+2x+1\begin{gathered} x^2+2x+1 \end{gathered}