5. Proving Triangle Congruence by SSS
Sign In
Using the given coordinates, calculate the length of the triangle's three sides.
No, they are not congruent.
According to the Side-Side-Side Congruence Theorem, if three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent. To compare them, we should find their lengths. We can do this using the Distance Formula.
Side | Points | sqrt((x_2-x_1)^2+(y_2-y_1)^2) | Length |
---|---|---|---|
AB | ( -2,1),( 3,-3) | sqrt(( 3-( - 2))^2+( -3- 1)^2) | sqrt(41) |
BC | ( 3,-3),( 7,5) | sqrt(( 7- 3)^2+( 5-( -3))^2) | sqrt(80) |
AC | ( -2,1),( 7,5) | sqrt(( 7-( - 2))^2+( 5- 1)^2) | sqrt(97) |
DE | ( 3,6),( 8,2) | sqrt(( 8- 3)^2+( 2- 6)^2) | sqrt(41) |
EF | ( 8,2),( 10,11) | sqrt(( 10- 8)^2+( 11- 2)^2) | sqrt(85) |
DF | ( 3,6),( 10,11) | sqrt(( 10- 3)^2+( 11- 6)^2) | sqrt(74) |
We found that only AB and DE are congruent. All the other sides have different lengths. Therefore, the figures are not congruent.