You must have JavaScript enabled to use this site.
Expand menu
menu_open
Minimize
Start chapters
Home
History
history
History
expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics
equalizer
Progress
expand_more
Student
navigate_next
Teacher
navigate_next
filter_list
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
Choose book
search
cancel
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}%
Sign in to view progress
{{ printedBook.courseTrack.name }}
{{ printedBook.name }}
Get free trial
search
Use offline
Tools
apps
Login
account_circle
menu_open
Solving Radical Equations
Choose Course
Algebra 2
Radical Functions
Solving Radical Equations
expand_more
close
Solving Radical Equations 1.7 - Solution
arrow_back
Return to Solving Radical Equations
a
First, we need to undo the radical expressions by squaring both sides of the equation.
x
+
4
=
7
−
x
\sqrt{x+4}=\sqrt{7-x}
x
+
4
=
7
−
x
RaiseEqn
LHS
2
=
RHS
2
\text{LHS}^{2}=\text{RHS}^{2}
LHS
2
=
RHS
2
x
+
4
=
7
−
x
x+4=7-x
x
+
4
=
7
−
x
AddEqn
LHS
+
x
=
RHS
+
x
\text{LHS}+x=\text{RHS}+x
LHS
+
x
=
RHS
+
x
2
x
+
4
=
7
2x+4=7
2
x
+
4
=
7
SubEqn
LHS
−
4
=
RHS
−
4
\text{LHS}-4=\text{RHS}-4
LHS
−
4
=
RHS
−
4
2
x
=
3
2x=3
2
x
=
3
DivEqn
LHS
/
2
=
RHS
/
2
\left.\text{LHS}\middle/2\right.=\left.\text{RHS}\middle/2\right.
LHS
/
2
=
RHS
/
2
x
=
1.5
x=1.5
x
=
1
.
5
Next we need to test
x
=
1.5
x=1.5
x
=
1
.
5
to ensure that it is not an
extraneous solution
.
x
+
4
=
7
−
x
\sqrt{x+4}=\sqrt{7-x}
x
+
4
=
7
−
x
Substitute
x
=
1.5
x={\color{#0000FF}{1.5}}
x
=
1
.
5
1.5
+
4
=
?
7
−
1.5
\sqrt{{\color{#0000FF}{1.5}}+4}\stackrel{?}{=}\sqrt{7-{\color{#0000FF}{1.5}}}
1
.
5
+
4
=
?
7
−
1
.
5
AddSubTerms
Add and subtract terms
5.5
=
5.5
\sqrt{5.5}=\sqrt{5.5}
5
.
5
=
5
.
5
Since we arrived at a true statement we know that
x
=
1.5
x=1.5
x
=
1
.
5
is a solution to the equation.
b
We use the same method here as in Part A.
5
x
−
16
=
2
x
+
2
\sqrt{5x-16}=\sqrt{2x+2}
5
x
−
1
6
=
2
x
+
2
RaiseEqn
LHS
2
=
RHS
2
\text{LHS}^{2}=\text{RHS}^{2}
LHS
2
=
RHS
2
5
x
−
16
=
2
x
+
2
5x-16=2x+2
5
x
−
1
6
=
2
x
+
2
SubEqn
LHS
−
2
x
=
RHS
−
2
x
\text{LHS}-2x=\text{RHS}-2x
LHS
−
2
x
=
RHS
−
2
x
3
x
−
16
=
2
3x-16=2
3
x
−
1
6
=
2
AddEqn
LHS
+
16
=
RHS
+
16
\text{LHS}+16=\text{RHS}+16
LHS
+
1
6
=
RHS
+
1
6
3
x
=
18
3x=18
3
x
=
1
8
DivEqn
LHS
/
3
=
RHS
/
3
\left.\text{LHS}\middle/3\right.=\left.\text{RHS}\middle/3\right.
LHS
/
3
=
RHS
/
3
x
=
6
x=6
x
=
6
We arrived at
x
=
6.
x=6.
x
=
6
.
Let's test it by substituting
6
6
6
for
x
x
x
in the original equation.
5
x
−
16
=
2
x
+
2
\sqrt{5x-16}=\sqrt{2x+2}
5
x
−
1
6
=
2
x
+
2
Substitute
x
=
6
x={\color{#0000FF}{6}}
x
=
6
5
⋅
6
−
16
=
?
2
⋅
6
+
2
\sqrt{5 \cdot {\color{#0000FF}{6}}-16}\stackrel{?}{=}\sqrt{2 \cdot {\color{#0000FF}{6}}+2}
5
⋅
6
−
1
6
=
?
2
⋅
6
+
2
Multiply
Multiply
30
−
16
=
?
12
+
2
\sqrt{30-16}\stackrel{?}{=}\sqrt{12+2}
3
0
−
1
6
=
?
1
2
+
2
AddSubTerms
Add and subtract terms
14
=
14
\sqrt{14}=\sqrt{14}
1
4
=
1
4
This result shows that
x
=
6
x=6
x
=
6
is a solution to the equation.