{{ toc.name }}
{{ toc.signature }}
{{ toc.name }} {{ 'ml-btn-view-details' | message }}
{{ stepNode.name }}
Proceed to next lesson
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.introSlideInfo.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
{{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }}

{{ 'ml-heading-lesson-settings' | message }}

{{ 'ml-lesson-show-solutions' | message }}
{{ 'ml-lesson-show-hints' | message }}
{{ 'ml-lesson-number-slides' | message : article.introSlideInfo.bblockCount}}
{{ 'ml-lesson-number-exercises' | message : article.introSlideInfo.exerciseCount}}
{{ 'ml-lesson-time-estimation' | message }}

Concept

Reciprocal

Two numbers are reciprocals, or multiplicative inverses, of each other when their product is the multiplicative identity. For example, the reciprocal of is because their product is
The reciprocal of a number can be found by dividing by

Note that and are reciprocal to each other. Shortcuts exist to find the reciprocals of specific types of numbers like natural numbers, integer numbers, fractions, and decimals.

Type Reciprocal Example
Natural Number The reciprocal of is
Integer Numbers The reciprocal of is
Fraction The reciprocal of is
Decimal The reciprocal of is

Finding the reciprocal of a mixed fraction is like finding the reciprocal of a fraction. However, the mixed number is first written as an improper fraction.