{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Show less Show more expand_more
{{ ability.description }} {{ ability.displayTitle }}
Lesson Settings & Tools
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
 Divide Fractions
Concept

Reciprocal

Two numbers are reciprocals, or multiplicative inverses, of each other when their product is the multiplicative identity. For example, the reciprocal of is because their product is
The reciprocal of a number can be found by dividing by

Shortcuts exist to find the reciprocals of specific types of numbers such as natural numbers, integer numbers, fractions, and decimals.

Type Reciprocal Example
Natural number The reciprocal of is
Integer numbers The reciprocal of is
Fraction The reciprocal of is
Decimal The reciprocal of is

Finding the reciprocal of a mixed number is like finding the reciprocal of a fraction. However, the mixed number must first be written as an improper fraction.

Loading content