{{ item.displayTitle }}

No history yet!

Student

Teacher

{{ item.displayTitle }}

{{ item.subject.displayTitle }}

{{ searchError }}

{{ courseTrack.displayTitle }} {{ statistics.percent }}% Sign in to view progress

{{ printedBook.courseTrack.name }} {{ printedBook.name }} a

b

$x+2 =-4$

RaiseEqn$LHS_{2}=RHS_{2}$

$x+2=(-4)_{2}$

CalcPowCalculate power

$x+2=16$

SubEqn$LHS−2=RHS−2$

$x=14$

$x=14$ **does not** solve the original equation. We could have expected this from the beginning because the square root of a number can never be negative. Because of this, the equation lacks real solutions.

c

$60−3x =9$

RaiseEqn$LHS_{2}=RHS_{2}$

$60−3x=9_{2}$

CalcPowCalculate power

$60−3x=81$

SubEqn$LHS−60=RHS−60$

$-3x=21$

DivEqn$LHS/(-3)=RHS/(-3)$

$x=-7$

$60−3x =9$

Substitute$x=-7$

$60−3(-7) =?9$

MultNegNegOnePar$-a(-b)=a⋅b$

$60+21 =?9$

AddTermsAdd terms

$81 =?9$

CalcRootCalculate root

$9=9$