{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Show less Show more expand_more
{{ ability.description }} {{ ability.displayTitle }}
Lesson Settings & Tools
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
Inequalities can be solved like equations. The key step is to isolate the variable on one side of the inequality. Inequalities may have multiple, or even infinitely many, solutions. In this lesson several examples are introduced showing how to use the properties of inequalities to solve them.

Catch-Up and Review

Challenge

Tickets for a Drama: Making Money

Jordan is a member of the drama club at her school. The club plans to stage the play The Little Frog in Town this weekend. They charge per ticket.

a The club hopes to earn at least from the play. If the club has already sold tickets, write an inequality to represent the number of tickets they still need to sell.
b What is the minimum total number of tickets the club needs to sell to reach their goal?
Discussion

Properties of Inequalities

Not all inequalities are expressed in the form or Yet, through inverse operations and the Properties of Inequalities, any inequality can be simplified to one of the mentioned forms. Consider the Addition and Subtraction Properties of Inequalities.

Rule

Addition Property of Inequality

Adding the same number to both sides of an inequality generates an equivalent inequality. This equivalent inequality will have the same solution set and the inequality sign remains the same. Let and be real numbers such that Then, the following conditional statement holds true.

If then

This property holds for the other types of inequalities.
The Addition Property of Inequality for All Types of Inequalities

Proof

Addition Property of Inequality
The case when will be proven. The remaining cases can be proven similarly. Before starting the proof, the following biconditional statement needs to be considered.
Now, the Identity Property of Addition can be applied to the second part of the statement.

Rewrite as

Using the biconditional statement, the last inequality can be rewritten.
Finally, because the property is obtained.

If then

Discussion

Subtraction Property of Inequality

Subtracting the same number from both sides of an inequality produces an equivalent inequality. The solution set and inequality sign of this equivalent inequality does not change. Let and be real numbers such that Then, the following conditional statement holds true.

If then

This property holds for the other types of inequalities.
The Subtraction Property of Inequality for All Types of Inequalities

Proof

Subtraction Property of Inequality
The case when will be proven. The other cases can be proven using a similar reasoning. Consider the biconditional statement before beginning the proof.
This property can be proven using the Additive Inverse of which is Now, the Identity Property of Addition can be applied to the second part of the statement.

Rewrite as

From the biconditional statement, the last inequality can be rewritten.
Finally, because the property has been proven.

If then

Discussion

Multiplication Property of Inequality

Multiplying both sides of an inequality by a nonzero real number produces an equivalent inequality. The following conditions about need to be considered when applying this property.

Positive If is positive, the inequality sign remains the same.
Negative If is negative, the inequality sign needs to be reversed to produce an equivalent inequality.

For example, let and be real numbers such that and Then, the equivalent inequalities can be written depending on the sign of

  • If and then
  • If and then
This property holds for the other types of inequalities.
The Multiplication Property of Inequality for All Types of Inequalities

Proof

Multiplication Property of Inequality

The case when will be proven. The remaining cases can be proven following a similar reasoning. Before starting the proof, the following properties of real numbers need to be considered.

  • if and only if
  • If and are positive, then
  • If is negative, then is positive.

Using these properties, the following conditional statements can be proven.

  • If and then
  • If and then

Each conditional statement will be analyzed separately.

When Is Greater Than

It is given that then using the first property, it is known that is greater than
Furthermore, because from the second property, it can be stated that the product of and is also greater than
Now, the second part of this conditional statement can be rewritten using the Distributive Property.
From the first property, it can be said that if and only if Additionally, because the conditional statement has been proven.
If and then

When Is Less Than

Again, because the following statement is valid.
Additionally, since from the third property it follows that is positive. Moreover, the product of and will be positive.
Now, can be distributed in the second part of the statement.
Simplify
Finally, because the property has been proven.

If and then

Discussion

Division Property of Inequality

Dividing both sides of an inequality by a nonzero real number produces an equivalent inequality. However, the following conditions need to be considered.

Positive If is positive, the inequality sign remains the same.
Negative If is negative, the inequality sign needs to be reversed to produce an equivalent inequality.

For example, let and be real numbers such that and Then, the equivalent inequalities can be written depending on the sign of

  • If and then
  • If and then
This property holds for the other types of inequalities.
The Division Property of Inequality for All the Types of Inequalities

Proof

Division Property of Inequality

The case when will be proven. The remaining cases can be proven following a similar reasoning. Before starting the proof, the following properties of real numbers need to be considered.

  • if and only if is positive.
  • If and are positive, then is also positive.
  • If is negative, then is positive.

Using these properties, the following conditional statements can be proven.

  • If and then
  • If and then

Each case will be analyzed separately.

It is given that then using the first property, it is known that is greater than
Furthermore, because from the second property, it can be stated that divided by is also greater than
Now, the second part of this conditional statement can be rewritten.
By using the first property, it can be said that is less than Additionally, because the property has been proven.

If and then

Again, because the following statement is valid.
Additionally, since from the third property, it follows that is positive. Moreover, the quotient of and will be positive.
Now, the second part of this statement can be rewritten.
Simplify
Finally, because the property has been obtained.

If and then

Pop Quiz

Identifying the Appropriate Property to Solve the Inequality

In the applet, determine the property used to isolate the variable on one side of the given inequality as shown.

An applet showing different inequalities and its equivalent inequality that results of applying one of the properties of inequalities