Sign In
Multiply both sides of the rational equation by the least common denominator.
-6/5, -1
LHS * 2 (3s+2) (s-2)=RHS* 2 (3s+2) (s-2)
Distribute 2(3s+2)(s-2)
a/c* b = a* b/c
Cancel out common factors
Simplify quotient
Commutative Property of Multiplication
Distribute (3s+2)
Distribute 2s
Distribute s
Distribute 3
LHS+4s=RHS+4s
Add terms
Substitute values
s=-11± 1/10 | |
---|---|
s=-11+ 1/10 | s=-11- 1/10 |
s=-10/10 | s=-12/10 |
s=-1 | s=-6/5 |
We found that s=-1 and s=- 65 are possible solutions. Now we have to check them!
s= -1
(- a)^2=a^2
Identity Property of Multiplication
a(- b)=- a * b
- a(- b)=a* b
Add and subtract terms
- a/- b=a/b
Put minus sign in front of fraction
a+(- b)=a-b
a/b=.a /2./.b /2.
a/b=a * 3/b * 3
Subtract fractions
s= -6/5
(- a)^2=a^2
(a/b)^m=a^m/b^m
a(- b)=- a * b
- a(- b)=a* b
a*b/c= a* b/c
a = 5* a/5
a/b=a * 5/b * 5
Put minus sign in numerator
Add and subtract terms
Put minus sign in front of fraction
- a/- b=a/b
a(- b)=- a * b
Multiply fractions
a/b=.a /10./.b /10.
a/b=.a /5./.b /5.
a/b=.a /20./.b /20.
a/b=a * 8/b * 8
Subtract fractions